Project planning EN

Servo motors

MCA asynchronous servo motor

Contents

About this document	5
Document description	5
Further documents	5
Notations and conventions	6
Product information	7
Product description	
Identification of the products.	
Features	8
The modular system	9
Information on project planning	11
Safety instructions	
Basic safety instructions	
Application as directed	
Foreseeable misuse	
Residual hazards	
Drive dimensioning	
Final configuration	
Surface and corrosion protection	
Information on mechanical installation	22
Important notes	
Transport	22
Installation	22
Information on electrical installation	23
Important notes	
Preparation	
Technical data	
Notes regarding the given data	
Standards and operating conditions.	
Conformities and approvals	
Protection of persons and device protection	
EMC data	
Environmental conditions.	
Radial forces and axial forces	
Rated data	32
Inverter mains connection 400 V, Self-ventilated motors	33
Inverter mains connection 400 V, Forced ventilated motors	35
Selection tables	40
Torque characteristics	54
Dimensions	73
Basic dimensions	74
Additional lengths	91
Weights	92
Basic weights	92
Additional weights	92

Contents

Product extensions	99
Motor connection	99
Connection via terminal box	99
Connection via ICN connector	98
Brakes	103
Permanent magnet brakes.	
Spring-applied brakes	
Feedback	
Resolver	
Incremental encoder	
Absolute value encoder	113
Blower	
Temperature monitoring	
Thermal detectors PT1000	
Product codes	110
Environmental notes and recycling	118
Appendix	119
Good to know	
Approvals and directives	
Operating modes of the motor	
Fnclosures	12'

About this document

Document description

This document addresses to all persons who want to carry out any configurations with the products described.

The data and information compiled in this document serve to support you in the dimensioning and selection processes and in carrying out the electrical and mechanical installation. You will receive information regarding product extensions and accessories.

- The document includes safety instructions which must be observed.
- All persons working on and with the drives must have the documentation at hand during work and observe the information and notes relevant for it.
- The documentation must always be complete and in a perfectly readable state.

NOTICE

Please observe the notes in the following chapters!

- ► Safety instructions 🕮 11
- ► Information on mechanical installation 🕮 22
- ► Information on electrical installation

 23

Further documents

Information and tools with regard to the Lenze products can be found on the

www.Lenze.com → Downloads

About this document

Notations and conventions

Notations and conventions

This document uses the following conventions to distinguish different types of information:

Numbers		
Decimal separator	Point	In general, the decimal point is used. Example: 1 234.56
Warning	1	
UL warning	UL	Are used in English and French.
UR warning	UR	
Text	•	
Programs	» «	Software
		Example: »Engineer«, »EASY Starter«
Icons		
Page reference	Ω	Reference to another page with additional information
		Example: 🕮 16 = see page 16
Documentation reference	(Reference to another documentation with additional information
		Example: Example: EDKxxx = see documentation EDKxxx

Layout of the safety instructions

⚠ DANGER!

Indicates an extremely hazardous situation. Failure to comply with this instruction will result in severe irreparable injury and even death.

<u>^</u>WARNING!

Indicates an extremely hazardous situation. Failure to comply with this instruction may result in severe irreparable injury and even death.

⚠CAUTION!

Indicates a hazardous situation. Failure to comply with this instruction may result in slight to medium injury.

NOTICE

Indicates a material hazard. Failure to comply with this instruction may result in material damage.

Product information

Product description

The MCA asynchronous servo motor for precisely controlled motion.

This asynchronous servo motor is suitable for applications that require a high dynamic performance, high construction-related operational reliability and compact dimensions.

In connection with the i700 and i950 servo inverters, Servo Drives 9400, and Inverter Drives 8400 TopLine, high-performance drive solutions in the torque range from 2 to 1100 Nm can be obtained.

Customer benefit

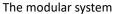
- Compact design
- · Optimum controllability and high dynamic performance thanks to low moments of inertia
- Optimal smooth running characteristics for exact work results
- Wide speed setting range
- Field weakening operation usable
- Robust resolvers are included as a standard, and incremental encoders or absolute value encoders ensure a high precision
- Easy assembly and easy servicing by connectors with bayonet lock and swivel connector boxes

Asynchronous servo motor MCA10I40-

Asynchronous servo motor MCA22P08-


Identification of the products

Product name: MCA asynchronous servo motor

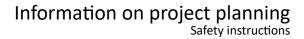

Meaning	Variant					
Product family		MCA				
Size			10			
			13			
			14			
			17			
			19			
			20			
			21			
			22			
			26			
Overall length				I		
				X		
Rated speed	rpm x 100				05	
					42	
Inverter mains	3 x 400 V					-
connection	Degree of protection:					
	IP54 / IP65					
	3 x 400 V					Н
	Degree of protection: IP23s					
	255					

Features

The following figure provides an overview of the elements and connections on the product. Their position, size and appearance may vary.

Product information The modular system

The modular system


Values printed in bold are standard designs. Values that are not printed in bold are potential extensions, some of them including a surcharge.

Motor		MCA10	MCA13	MCA14	MCA17	MCA19	MCA21
Technical data							
Rated power	kW	0.8	1.7 2.2	1.4 3.9	2.6 6.9	4.0 13.2	6.4 20.3
Rated torque	Nm	2.0	4.0 6.3	5.4 12.0	9.5 21.5	12.0 36.3	17.0 61.4
Max. torque	Nm	10	32	60	100	180	300
Rated speed	rpm	3950	3410 4050	1635 4100	1680 4110	1700 4150	1710 4160
Color		Primed RAL90 RAL color	05 matt jet black				I
Surface and corrosion protection		OKS-G Different types	s of OKS				
Output shaft							
Solid shaft with featherkey	mm	14 x 30	19 x 40	24 x 50	24 x 50	28 x 60	38 x 80
Solid shaft without keyway	mm	14 x 30	19 x 40	24 x 50	24 x 50	28 x 60	38 x 80
Shaft material		Steel	•				
Shaft sealing ring material		FKM					
Shaft seal		Standard Oil-proof					
Design		With flange (B	With flange (B5/B14)				
Output flange	mm	FF100 FT85	FF130 FT130	FF165 FT130	FF165 FT130	FF215 FT130	FF215 FF265 FT130
Cooling		Self-ventilated	I IP54				
		Self-ventilated	IP65				
		_	Forced ventilat	ed IP54			
Motor connection		ICN connector					
		Terminal box					
Permanent magnet holding brake		Without With					
Standard braking torque	Nm	2.5	11	12	22	40	80
DC brake voltage	V	24 205 (not for cl	JRus)				
Feedback							
Without functional safety		Resolver Absolute value Incremental er					
With functional safety		Resolver Incremental encoder					
Temperature monitoring		PT1000 tempe	rature sensor				

Product information The modular system

Motor		MCA20	MCA22	MCA26
Technical data				
Rated power	kW	9.1 16.4	8.8 33.8	12.4 53.8
Rated torque	Nm	53.5 61.0	100 120	195 280
Max. torque	Nm	250	500	1100
Rated speed	rpm	1420 2930	760 2935	550 2235
Color		Primed RAL9005 matt jet blad RAL color	k	
Surface and corrosion protection		OKS-G Different types of OKS		
Output shaft				
Solid shaft with featherkey	mm	38 x 80	38 x 80	55 x 110
Solid shaft without keyway	mm	38 x 80	38 x 80	55 x 110
Shaft material		Steel		
Shaft sealing ring material		FKM		
Output shaft bearing		Normal Reinforced		
Shaft seal		Standard Oil-proof Dust-proof		
Design		With foot (B3) With foot and flange (B35)		
Output flange	mm	FF215 FF265	FF265	FF265 FF350
Cooling		Forced ventilated IP23s	Forced ventilated IP54	
Dust filter		Without With		
Motor connection				
Power + brake + Blower		ICN connector Terminal box	Terminal box	
Encoder + temperature monitoring		ICN connector		
Spring-applied holding brake		Without With		
Standard braking torque	Nm	80	130	260
Increased braking torque		130	260	-
DC brake voltage	V	24		l .
AC brake voltage	V	230 (not for cURus)		
Feedback				
Without functional safety		Resolver Absolute value encoder Incremental encoder		
With functional safety		Resolver Incremental encoder		
Temperature monitoring		PT1000 temperature sensor		

Safety instructions

Disregarding the following basic safety measures and safety information may lead to severe personal injury and damage to property!

Observe all specifications of the corresponding documentation supplied. This is the precondition for safe and trouble-free operation and for obtaining the product features specified.

Please observe the specific safety information in the other sections!

Safety instructions Basic safety instructions

Basic safety instructions

⚠ DANGER!

Dangerous electrical voltage

Possible consequences: Death or severe injuries from electric shock

- ► Any work on the device must only be carried out in a deenergized state.
- ► After switching off the mains voltage, observe the signs on the product.

Product

- The product must only be used as directed.
- Never commission the product in the event of visible damage.
- The product must never be technically modified.
- Never commission the product before assembly has been completed.
- The product must never be operated without required covers.
- Connect/disconnect all pluggable terminals only in de-energized condition.
- Only remove the product from the installation in the de-energized state.

Personnel

Only qualified and skilled personnel are allowed to work with the product. IEC 60364 and/or CENELEC HD 384 define the qualifications of these persons as follows:

- They are familiar with the installation, mounting, commissioning, and operation of the product.
- They possess the appropriate qualifications for their tasks.
- They are familiar with all regulations for the prevention of accidents, directives, and laws
 applicable at the location and are able to apply them.

Electrical connection

When working on energized products, comply with the applicable national accident prevention regulations.

The electrical installation work must be carried out according to the appropriate regulations (e.g. cable cross-sections, fusing, PE conductor connection). Additional information can be obtained from this documentation.

This documentation contains notes about installation according to EMC regulations. Also observe these notes for CE-marked products. The manufacturer of the system or machine is responsible for adherence to the limits required in connection with EMC legislation.

Operation

Where appropriate, you must equip the system with additional monitoring and protective devices. Comply with the safety regulations and other regulations applicable at the place of operation.

After disconnecting the product from the supply voltage, do not touch live device parts and power terminals immediately because capacitors may be charged. Observe the corresponding information labels on the product.

Dirt or dust deposits impede the heat dissipation and cooling. Remove any such deposits where appropriate at regular intervals.

Process engineering

The procedural notes and circuit details described are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Lenze does not take any responsibility for the suitability of the procedures and circuit proposals described.

Disposal

The products and accessories must be properly disposed of in accordance with the applicable regulations. The products contain raw materials that can be recycled such as metals, plastics and electronic components.

Safety instructions Application as directed

Application as directed

NOTICE

Please observe the notes in the following chapters!

- ► Safety instructions 🕮 11
- ► Information on mechanical installation 🕮 22
- ► Information on electrical installation 🕮 23
- The product must only be actuated under the operating conditions and power limits specified in this documentation.
- The product meets the protection requirements of 2014/35/EU: Low-Voltage Directive.
- The product is not classed as a machine under 2006/42/EC: Machinery Directive.
- No machine is to be commissioned or put into operation as intended in conjunction with the product until it has been determined that the machine meets the regulations of EC Directive 2006/42/EC: Machinery Directive; observe EN 60204-1.
- Commissioning or putting into operation as intended is only permitted in compliance with the EMC Directive 2014/30/EU.
- The product is not a household appliance. Instead, it is a component that is intended
 exclusively for further use in the context of commercial or professional use as defined by
 EN 61000-3-2.
- The product can be used according to the technical data if the drive systems have to comply with categories in accordance with EN 61800–3.
- Do not use the built-in brakes as fail-safe brakes. Disruptive factors that cannot be influenced may cause the braking torque to be reduced.
- The product is only to be operated together with an inverter.
- The harmonized standards of the series IEC/EN60034 are used.

Foreseeable misuse

- Operate directly on the mains voltage
- Use in potentially explosive atmospheres
- · Operate in aggressive environments (acids, gases, vapors, dusts, oils)
- Operate under water
- · Operate under radiation
- Operate in generator mode

Safety instructions Residual hazards

Residual hazards

Even if notes given are taken into consideration and protective measures are implemented, the occurrence of residual risks cannot be fully prevented.

The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system.

If the above is disregarded, this can lead to severe injuries to persons and damage to property!

Product

Observe the warning labels on the product!

Dangerous electrical voltage:

Before working on the product, make sure there is no voltage applied to the power terminals!

After mains disconnection, the power terminals will still carry the hazardous electrical voltage for the time given next to the symbol!

Electrostatic sensitive devices:

Before working on the product, the staff must ensure to be free of electrostatic charge!

High leakage current:

Carry out fixed installation and PE connection in compliance with: EN 61800–5–1 / EN 60204–1

Hot surface:

Use personal protective equipment or wait until the device has cooled down!

Protection of persons

- The product does not provide any safety-related functions.
 - A higher-level safety system must be implemented.
 - Provide additional monitoring and protective equipment complying with the safety regulations applicable in each case.
- The power terminals may carry voltage in the switched-off state or when the motor is stopped.
 - Before working, check whether all power terminals are deenergized.
- Voltages may occur on the drive components (e.g. capacitive, caused by inverter supply).
 - Careful earthing must be carried out at the marked positions of the components.
- There is a risk of burns from hot surfaces!
 - Provide protection against accidental contact.
 - Use personal protective equipment or wait until the device has cooled down!
 - Prevent contact with flammable substances.
- Risk of injury from rotating parts.
 - Before working on the drive system, ensure that the motor is at a standstill.
- There is a danger of unintentional start-up or electric shocks!
- Installed brakes are no fail-safe brakes.
 - torque may be reduced by disruptive factors that cannot be influenced such as ingressing oil.

Safety instructions Residual hazards

Motor protection

- · Version with plug:
 - Never disconnect the plug when energized. The plug could be destroyed.
 - Switch off the voltage supply or disable the inverter prior to disconnecting the plug.
- Installed thermal detectors are no full protection for the machine.
 - Limit the maximum current if necessary. Parameterize the inverter so that it will be switched off after several seconds of operation with I > I_{rated} especially if there is a danger of blocking.
 - The integrated overload protection does not prevent overloading under all conditions.
- The fuses are no motor protection.
 - Use a current-dependent motor protection switch.
 - Use the built-in thermal detectors.
- Excessively high torques cause a fracture of the motor shaft.
 - Do not exceed the maximum torques according to the technical data on the nameplate.
- Lateral forces on the motor shaft are possible.
 - Align the shafts of motor and driven machine exactly to each other.

Drive dimensioning

Drive dimensioning

In order to carry out an accurate drive dimensioning process, you can use our configuring software, the »Drive Solution Designer«.

With the «Drive Solution Designer«, you can design the drive both quickly and to a high quality. The software contains profound and proven expertise with regard to drive applications and mechatronic drive components.

Please get in touch with your Lenze representative.

The dimensioning is suitable for:

- · kinematic profiles
- · simple linear speed profiles, not for S-curves or similar

The following 3 elements are taken into consideration in the dimensioning process:

Drive function

On the basis of the values required for the process that are specified, a drive is selected, for which all operating points are within the speed-torque characteristic curve of the motor.

As a result, a motor with a suitable speed and an inverter with a sufficient maximum current are selected. Further limits (maximum speed, installation height...) are specified in tables.

Mechanical strength

On the basis of the occurring forces and torques, a drive is selected that has a sufficient mechanical strength (endurance strength for the periodically occurring torques and fatigue strength for the sporadically occurring torques).

Thermal dimensioning

For the inverter, the thermal dimensioning process is carried out on the basis of the continuous inverter current or on the basis of the continuous torque from the motor-inverter combination, which can be reached.

The motor is thermally dimensioned on the basis of the mean speed and the effective torque.

The mean speed of the drive should not exceed the values specified.

If dimensioning processes are complex or reach limit loads, please refer to your Lenze representative.

Information on project planning Drive dimensioning

Operation chart

S1 operation	S2,S3 and S6 operation	Speed profiles
†	†	+
	Check operating conditions	
	†	
	Define required input variables	
	†	
	Determine correction factor	
Operating modes and operating time	Operating modes and operating time	
Ambient temperature and installation height	Ambient temperature and installation height	Ambient temperature and installation height
	†	
	Determine motor on the basis of the forces acting	}
†	1	†
↓	↓	Define load characteristic for the individual time segments
↓	↓	<u></u>
1	Ţ	Calculation of the values required for the
• •	• •	process
↓	+	↓
	Inspect and select motor	
	†	
	Final configuration	

Check operating conditions

heck
pprovals
onformities
upply voltage
egree of protection
mbient temperature
urface protection

- ▶ Standards and operating conditions

 □ 25
- ▶ Surface and corrosion protection ☐ 21

Define required input variables

Necessary input variables	Note	Symbol	Unit
Mean speed utilisation	Relating to the load speed n _L		%
Ambient temperature		T _U	°C
Site altitude Amsl		Н	m
Radial force		F _{rad}	N
Axial force		F _{ax}	N
Transmission element at the output	Gear wheels, sprockets		
Effective diameter of the transmission element		d _w	mm
Load torque	Only with S1, S2, S3, and S6 operating modes	M _L	Nm
Load speed	Only with S1, S2, S3, and S6 operating modes	n _L	rpm
Short-time maximum torque	Emergency off, quick stop, occasional high starting duty	M _{L,max}	Nm
Runtime with maximum torque		t _L	%

Information on project planning Drive dimensioning

Determine correction factor

Operating modes	Operating modes S1, S2, S3, S6, and operating time						
Operating	g mode S1	Operating mode S2		Operating mode \$3		Operating mode S6	
ED	k _L	ED	k _L	ED	k _L	ED	k _L
%		min		%		%	
100	1.0	10	1.4 - 1.5	15	1.4 - 1.5	15	1.5 - 1.6
		30	1.15 - 1.2	25	1.3 - 1.4	25	1.4 - 1.5
		60	1.07 - 1.1	40	1.15 - 1.2	40	1.3 - 1.4
		90	1.0 - 1.05	60	1.05 - 1.1	60	1.15 - 1.2

▶ Operating modes of the motor ☐ 120

Ambient temperature		Installation	n height amsl			
	≤ 1000 m	≤ 2000 m	≤ 3000 m	≤ 4000 m		
	Correction factor					
T _U	k _H	k _H	k _H	k _H		
≤ 20 °C	1.15	1.06	0.97	0.89		
30 °C	1.07	0.99	0.90	0.83		
40 °C	1.00	0.92	0.83	0.77		
50 °C	0.92	0.85	0.76	0.71		
60 °C	0.83	0.77	0.70	0.65		

Determine product on the basis of the forces

Transmission element			Gear wheels	Sprockets	Toothed belt pulleys	Narrow V-belt
					(depending on the preloading)	(depending on the preloading)
			≥ 17 teeth = 1.0	≥ 20 teeth = 1.0	With belt tightener= 2.0 - 2.5	1.5 - 2.0
Additional radial force factor	f _z		< 17 teeth = 1.15	< 20 teeth = 1.25	Without belt tightener= 2.5 - 3.0	
				< 13 teeth = 1.4		
			Calculation		Check	
Radial force	F _{rad}	N	F _{rad} = 2000 >	$< \frac{M_{L,max} \times f_z}{dw}$	F _{rad} ≤ F _{rad,max}	
Axial force	F _{ax}	N			$F_{ax} \le F_{ax,max}$	

Effective diameter of transmission element dw

▶ Radial forces and axial forces □ 27

Operating mode S1

Check and select servo motor/inverter combination				
	Check	Selection	Unit	
Output torque	$M_{rated} \ge M_L / (k_L x k_H)$	M _{rated}	Nm	
Output speed	$n_{\text{rated}} \ge n_{\text{L}}$	n _{rated}	rpm	

▶ Rated data 🕮 32

Operating modes S2, S3, and S6

Check and select servo motor/inverter combination				
	Check	Selection	Unit	
Output torque	$M_{rated} \ge M_L / (k_L \times k_H)$	M _{rated}	Nm	
Output speed (recommendation)	$n_{rated} \ge n_L$	n _{rated}	rpm	
Max. output torque.	$M_{\text{max}} \ge M_{\text{L}}$	M _{max}	Nm	
Max. output speed	$n_{\text{max}} \ge n_{\text{L}}$	n _{max}	rpm	
All operating points (●)				
below the maximum torque characteristic of the servo motor/		n_{L}		
inverter combination here, M _{L,max} must	E L	M_L		
be considered	Σ			
Thermally effective operating point (0)		n_L		
below the S1 torque characteristic of				
the servo motor	n [r/min]	$M_L/(k_L x k_H)$		

▶ Rated data 🕮 32

▶ Torque characteristics ☐ 54

Speed profiles

Total time	Individual time segments	Load speed	Load speed variation	Steady-state load torque	Torque	Acceleration torque	Moment of inertia
t	Δt _z	n _{L,z}	Δn _{L,z}	M _{L,z}	M _z	M _{s,z}	J _L
S	s	rpm	rpm	Nm	Nm	Nm	kgcm ²

	Calculation	Symbol	Unit
Load cycle duration	$T = \sum \Delta t_z$	Т	s

Calculation of the values required for	Calculation of the values required for the process					
	Calculation	Symbol	Unit			
Torque per time segment	$M_z = M_{L,z} + J_L \frac{2\pi \times \Delta n_{L,z}}{60 \times \Delta t_z}$	M _z	Nm			
Maximum torque of the profile	$M_{P,max} = max (M_z)$	M _{P,max}	Nm			
Effective torque	$M_{eff} = \sqrt{\frac{1}{T} \sum_{z} M_{z}^{2} \times \Delta t_{z}}, T \le 1 min$	M _{eff}	Nm			
Mean speed	$n_{m} = \overline{n_{L,z}} = \frac{1}{T} \sum_{z} n_{L,z} \times \Delta t_{z}$	n _m	rpm			
Maximum load speed	$n_{L,max} = max (n_{L,z})$	n _{L,max}	rpm			

Information on project planning Drive dimensioning

Check and select servo motor/inverter con	mbination		
	Check	Preselection	Unit
Output torque	$M_{rated} > M_{eff} / k_{H}$	M _{rated}	Nm
Output speed	n _{rated} ≥ n _m	n _{rated}	rpm
Load-matching factor			
for an optimum dynamic performance/ control properties	Requirement $k_j = 0.5 \dots 10$ Optimum $k_j = 1$	$k_{J} = J_{L} / (J_{M} + J_{B})$	
Checking the motor torques			
Acceleration torque	$M_{S,z} = M_z + \left(J_M + J_B\right) \times \frac{2\pi \times \Delta n_{L,z}}{60 \times \Delta t_z}$	$M_{S,z}$	- Nm
Effective torque	$M_{S,eff} = \sqrt{\frac{1}{T} \sum_{z} M_{S,z}^2 \times \Delta t_z}$	M _{S,eff}	NIII
All operating points (●)			
below the maximum torque characteristic of the servo motor/ inverter combination here, M _{L,max} must be considered	N N N N N N N N N N N N N N N N N N N	$n_{L,z}$ $M_{S,z}$	
Thermally effective operating point (0)		n _m	
below the S1 torque characteristic of the servo motor	n [r/min]	M _{S,eff} / k _H	

▶ Rated data 🕮 32

▶ Torque characteristics ☐ 54

Final configuration
Surface and corrosion protection

Final configuration

	Check
Connection dimensions	Output shaft
	Output flange
Product extensions	Motor connection (connector/terminal box)
	Brake
	Feedback
	Blower

More information about the final configuration:

- ▶ The modular system ☐ 9
- ▶ Product extensions ☐ 93

Surface and corrosion protection

Depending on the ambient conditions, the surface and corrosion protection system (called OKS) offers solutions for optimum protection.

Various surface coatings ensure that the motors operate reliably at high air humidity, in outdoor installation or in the presence of atmospheric impurities. Any color from the "RAL Classic" collection can be chosen for the top coat.

Surface and corrosion protection	Applications	Туре
OKS-G (primed)	Dependent on subsequent top coat applied	Standard
OKS-S (small)	 Standard applications Internal installation in heated buildings Air humidity up to 90 % 	Optional
OKS-M (medium)	 Internal installation in non-heated buildings Covered, protected external installation Air humidity up to 95 % 	
OKS-L (large)	 External installation Air humidity above 95 % Chemical industrial plants Food industry 	

Surface and corrosion protection	Corrosivity category	Surface coating	Colour	Coating thickness
	DIN EN ISO 12944-2	Design		
OKS-G (primed)		2K PUR priming coat	RAL 9005 matt jet black	60 90 μm
OKS-S (small)	Comparable to C1	2K-PUR top coat		80 120 μm
OKS-M (medium)	Comparable to C2	2K PUR priming coat	According to RAL Classic	110 160 μm
OKS-L (large)	Comparable to C3	2K-PUR top coat		140 200 μm

Information on mechanical installation

Important notes

Information on mechanical installation

Important notes

- Install the product according to the information in the chapter "Standards and operating conditions".
 - ▶ Standards and operating conditions □ 25
- The technical data and the data regarding the supply conditions can be found on the nameplate and in this documentation.
- Ambient media especially chemically aggressive ones may damage shaft sealing rings, lacquers and plastics.
- Lenze offers special surface and corrosion protection in this case.

NOTICE

Bearing damage caused by unbalance!

Shafts with keyway are balanced with a half featherkey!

▶ Balance transmission elements with a half featherkey!

Transport

- · Ensure appropriate handling.
- Make sure that all component parts are securely mounted. Secure or remove loose component parts.
- Only use safely fixed transport aids (e.g., eye bolts or support plates).
- Do not damage any components during transport.
- Avoid electrostatic discharges on electronic components and contacts.
- Avoid impacts.
- Check the carrying capacity of the hoists and load handling devices. The weights can be found in the shipping documents.
- Secure the load against tipping and falling down.
- Standing beneath suspended loads is prohibited.

Installation

- The mounting surfaces must be plane, torsionally rigid and free from vibrations.
- The mounting areas must be suited to absorb the forces and torques generated during operation.
- Ensure an unhindered ventilation.
- For versions with a fan, keep a minimum distance of 10 % from the outside diameter of the fan cover in intake direction.

Information on electrical installation

Important notes

⚠ DANGER!

Risk of injury and risk of burns from dangerous voltage

Power terminals may also carry voltage in the switched-off state or when the motor is stopped and may cause life-threatening cardiac arrhythmia and serious burns.

- ▶ Disconnect the product from the mains.
- ► Check that the power terminals are deenergized before starting work.
- When working on energized products, comply with the applicable national accident prevention regulations.
- The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections, fuses, PE connection).
- The manufacturer of the system or machine is responsible for adherence to the limits required in connection with EMC legislation.

Operation on an external inverter

A max. pulse voltage amplitude of U_{pk} = 1560 V at the motor terminals must not be exceeded. Here, the minimum pulse rise time must be t_R = 0.1 μ s.

If it cannot be ruled out that the permissible voltage peaks will be exceeded or that the minimum pulse rise time will not be reached, the following measures must be initiated:

- Reduction of the DC-bus voltage (threshold for brake chopper voltage)
- Use of filters, chokes
- Use of special motor cables

Preparation

The notes for the electrical connection can be found in the enclosed mounting instructions.

EMC-compliant wiring

The EMC-compliant wiring is described in detail in the documentation of the Lenze inverters.

Notes regarding the given data

Technical data

Notes regarding the given data

The power values, torques and speeds specified in the configuration are rounded values and apply to:

- ambient temperature T_{II} = 40 °C for motors (in compliance with EN 60034)
- Site altitude ≤ 1000 m above mean sea level

The selection tables specify the inverter/ motor combination with the achievable torques.

The rated data applies to the S1 operating mode S1 (in accordance with EN 60034) and the operation on a servo inverter with a switching frequency of at least 4 kHz.

NOTICE

In case of other operating conditions, the achievable values can differ for those mentioned.

▶ In case of extreme operating conditions, please get in touch with your Lenze representative.

Cooling effect of mounting flange

Mounting on a thermally conducting / insulating plate or machine chassis has an influence on heating up the motor, particularly when using naturally ventilated motors.

The motor rating data specified in the catalogue applies when mounting on a steel plate with free convection with the following dimensions:

Motor	Width	Height
	mm	mm
MCA10 13	270	270
MCA14 17	330	330
MCA19 26	450	450

Standards and operating conditions

Conformities and approvals

Conformities			
	2011/65/EU	RoHS Directive	
CE 2014/30/EU		EMC Directive (reference: CE-typical drive system)	
	2014/35/EU	Low-Voltage Directive	
EAC	TP TC 020/2011	Eurasian conformity: Electromagnetic compatibility of technical means	
EAC	TP TR 004/2011	Eurasian conformity: Safety of low voltage equipment	

Approvals			
			for USA and Canada (requirements of the CSA
cURus	-	UL 1004-6	22.2 No. 100) servo motor, Lenze File No. E210321
UkrSepro		for Ukraine	

Protection of persons and device protection

Degree of protection										
EN	EN 60529,EN	IP54	Information applies to the mounted and ready-							
LIV	60034-5	IP65	for-use state							
Temperature class										
Insulation system	EN 60034-1	F (155 °C)	Insulation system							
Permissible voltage										
Limit curve A of the pulse voltage	IEC/TS 60034-25:2007	IEC/TS 60034-25:2007								
IVIC C	IEC 60034-18-41	at 500 V								

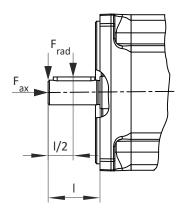
EMC data

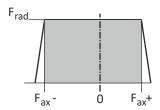
Noise emission		
Fulfils requirements according to	EN 60034-1	A final overall assessment of the drive system is indispensable
Noise immunity		
Fulfils requirements according to	EN 60034-1	A final overall assessment of the drive system is indispensable

Technical data
Standards and operating conditions
Environmental conditions

Environmental conditions

Climate							
	EN IEC	1K3 (-20 +40 °C)	>3 months				
Storage	60721-3-1:1997	1K3 (-20 +60 °C)	<3 months				
Transport	EN IEC 60721-3-2:1997	2K3 (-20 +70 °C)					
	EN IEC	3K3 (-10 +40 °C)	Operation with brake				
Operation	60721-3-3:1995 +	3K3 (-15+40 °C)	Operation without brake, forced ventilated				
	A2:1997	3K3 (-20+40 °C)	Operation without brake, self-ventilated				
ite altitude							
0 1000 m amsl		without current derating					
1000 4000 m amsl	-	Reduce rated output current by 5 %	6/1000 m				
Air humidity							
Without condensation	-	Average relative humidity 85 %					
Vibration resistance							
Operation	EN IEC 60721-3-3:1995 + A2:1997	3M6					
Vibration severity							
Α	EN 60034-14						
В	EN 60034-14		-				
/ibration velocity							
Eroo suspension		0.7 mm/s					
Free suspension	-	1.6 mm/s					
Smooth running, axial ru	inout, concentricity						
Normal class	EN 50347 / IEC						
Precision class	60072-1	-	-				




Radial forces and axial forces

The values of the bearing service life L_{10h} refer to the an average motor speed of 4000 rpm. With MCA 20/22/26 to 3000 rpm. Depending on the ambient temperatures, they are additionally limited by the grease lifetime.

Application of forces

Technical data Radial forces and axial forces

Application of force at I/2

Motor			MCA 10	MCA 13	MCA 14	MCA 17	MCA 19	MCA 20			
Bearing service life 5000											
Radial force	F _{rad}	rated	630	850	1000	1380	1880	3400			
Min. axial force	F _{ax,-}	rated	-130	-110	-140	-180	-50	-1330			
Max. axial force	F _{Fax,+}	rated	320	570	500	790	1530	690			
Bearing service life 10000	'						1	!			
Radial force	F _{rad}	rated	500	700	780	1040	1080	2500			
Min. axial force	F _{ax,-}	rated	-60	-10	-60	-70	-30	-1020			
Max. axial force	F _{Fax,+}	rated	250	450	420	680	1510	380			
Bearing service life 20000								•			
Radial force	F _{rad}	rated	400	470	550	660	500	1950			
Min. axial force	F _{ax,-}	rated	-30	0	-30	-40	-100	-780			
Max. axial force	F _{Fax,+}	rated	210	450	380	650	1490	140			
Bearing service life 30000							1				
Radial force	F _{rad}	rated	330	330	400	440	160	1700			
Min. axial force	F _{ax,-}	rated	-10	0	-10	-20	0	-690			
Max. axial force	F _{Fax,+}	rated	190	450	360	630	1470	40			
Bearing service life 50000			1			1	1	1			
Radial force	F _{rad}	rated	230	-	250	280	-	-			
Min. axial force	F _{ax,-}	rated	0	-	0	0	-	-			
Max. axial force	F _{Fax,+}	rated	200	-	350	610	-	-			

Motor			MCA 21	MCA 22	MCA 26						
Bearing service life 5000											
Radial force	F _{rad}	rated	3200	3600	6950						
Min. axial force	F _{ax,-}	rated	-260	-2370	-2500						
Max. axial force	F _{Fax,+}	rated	1740	1700	1580						
Bearing service life 10000	'										
Radial force	F _{rad}	rated	2360	2800	5400						
Min. axial force	F _{ax,-}	rated	-70	-1740	-1800						
Max. axial force	F _{Fax,+}	rated	1550	1090	880						
Bearing service life 20000	'										
Radial force	F _{rad}	rated	1470	2200	4300						
Min. axial force	F _{ax,-}	rated	-20	-1280	-1300						
Max. axial force	F _{Fax,+}	rated	1504	640	380						
Bearing service life 30000	'	'									
Radial force	F _{rad}	rated	1030	1900	3700						
Min. axial force	F _{ax,-}	rated	0	-1080	-1090						
Max. axial force	F _{Fax,+}	rated	1480	440	160						
Bearing service life 50000	'										
Radial force	F _{rad}	rated	-	1600	-						
Min. axial force	F _{ax,-}	rated	-	-880	-						
Max. axial force	F _{Fax,+}	rated	-	240	-						

Reinforced bearing

Motor			MCA 20	MCA 22	MCA 26						
Bearing service life 5000											
Radial force	F _{rad}	rated	7100	8500	10500						
Min. axial force	F _{ax,-}	rated	-970	-1850	-2180						
Max. axial force	F _{Fax,+}	rated	330	1200	1250						
Bearing service life 10000											
Radial force	F _{rad}	rated	5100	7000	8370						
Min. axial force	F _{ax,-}	rated	-800	-1400	-1530						
Max. axial force	F _{Fax,+}	rated	160	760	600						
Bearing service life 20000											
Radial force	F _{rad}	rated	3900	5600	6670						
Min. axial force	F _{ax,-}	rated	-640	-1030	-1130						
Max. axial force	F _{Fax,+}	rated	0	390	200						
Bearing service life 30000											
Radial force	F _{rad}	rated	-	4350	5840						
Min. axial force	F _{ax,-}	rated	-	-930	-960						
Max. axial force	F _{Fax,+}	rated	-	290	30						
Bearing service life 50000					1						
Radial force	F _{rad}	rated	-	3200	-						
Min. axial force	F _{ax,-}	rated	-	-800	-						
Max. axial force	F _{Fax,+}	rated	-	160	-						

Technical data Radial forces and axial forces

Application of force at I

Motor			MCA 10	MCA 13	MCA 14	MCA 17	MCA 19	MCA 20			
Bearing service life 5000											
Radial force	F _{rad}	rated	590	780	930	1270	1740	3150			
Min. axial force	F _{ax,-}	rated	-130	-110	-140	-180	-50	-1170			
Max. axial force	F _{Fax,+}	rated	320	570	500	790	1530	530			
Bearing service life 10000	-	1	•		-		1	•			
Radial force	F _{rad}	rated	470	640	710	960	1000	2300			
Min. axial force	F _{ax,-}	rated	-60	-10	-60	-70	-30	-920			
Max. axial force	F _{Fax,+}	rated	250	450	420	680	1510	280			
Bearing service life 20000		-	-		-		-				
Radial force	F _{rad}	rated	370	430	490	610	420	1800			
Min. axial force	F _{ax,-}	rated	-30	0	-30	-40	-100	-710			
Max. axial force	F _{Fax,+}	rated	210	450	380	650	1490	70			
Bearing service life 30000		1			1						
Radial force	F _{rad}	rated	310	300	370	400	140	1400			
Min. axial force	F _{ax,-}	rated	-10	0	-10	-20	0	-650			
Max. axial force	F _{Fax,+}	rated	190	450	360	630	1470	0			
Bearing service life 50000			1	ı	1	1	1				
Radial force	F _{rad}	rated	220	-	230	260	-	-			
Min. axial force	F _{ax,-}	rated	0	-	0	0	-	-			
Max. axial force	F _{Fax,+}	rated	200	-	350	610	-	-			

Motor			MCA 21	MCA 22	MCA 26						
Bearing service life 5000											
Radial force	F _{rad}	rated	2940	3500	6400						
Min. axial force	F _{ax,-}	rated	-260	-2240	-2080						
Max. axial force	F _{Fax,+}	rated	1740	1600	1150						
Bearing service life 10000											
Radial force	F _{rad}	rated	2160	2600	5000						
Min. axial force	F _{ax,-}	rated	-70	-1640	-1600						
Max. axial force	F _{Fax,+}	rated	1550	1100	680						
Bearing service life 20000	'										
Radial force	F _{rad}	rated	1350	2050	4000						
Min. axial force	F _{ax,-}	rated	-20	-1200	-1160						
Max. axial force	F _{Fax,+}	rated	1504	560	230						
Bearing service life 30000											
Radial force	F _{rad}	rated	950	1800	3400						
Min. axial force	F _{ax,-}	rated	0	-1020	-1090						
Max. axial force	F _{Fax,+}	rated	1480	380	50						
Bearing service life 50000											
Radial force	F _{rad}	rated	-	1450	-						
Min. axial force	F _{ax,-}	rated	-	-850	-						
Max. axial force	F _{Fax,+}	rated	-	200	-						

Reinforced bearing

Motor			MCA 20	MCA 22	MCA 26						
Bearing service life 5000											
Radial force	F _{rad}	rated	6350	7000	9600						
Min. axial force	F _{ax,-}	rated	-720	-1750	-2200						
Max. axial force	F _{Fax,+}	rated	80	1100	1280						
Bearing service life 10000				•							
Radial force	F _{rad}	rated	4100	5500	7700						
Min. axial force	F _{ax,-}	rated	-680	-1300	-1280						
Max. axial force	F _{Fax,+}	rated	40	660	360						
Bearing service life 20000											
Radial force	F _{rad}	rated	2800	4700	6000						
Min. axial force	F _{ax,-}	rated	-640	-920	-960						
Max. axial force	F _{Fax,+}	rated	0	280	30						
Bearing service life 30000	'				l						
Radial force	F _{rad}	rated	-	3900	-						
Min. axial force	F _{ax,-}	rated	-	-820	-						
Max. axial force	F _{Fax,+}	rated	-	180	-						
Bearing service life 50000	,				1						
Radial force	F _{rad}	rated	-	3000	-						
Min. axial force	F _{ax,-}	rated	-	-700	-						
Max. axial force	F _{Fax,+}	rated	-	60	-						

Technical data

Rated data

NOTICE

► The specification of the maximum torque refers to the mechanical load capacity and not to the maximum current.

Inverter mains connection 400 V, Self-ventilated motors

Motor		MCA 10I40-	MCA 13I41-	MCA 14L41-	MCA 14L20-	MCA 17N23-	MCA 17N41-	
Degree of protection			IPxx	IPxx	IPxx	IPxx	IPxx	IPxx
Standstill torque	M ₀	Nm	2.30	4.60	8.00	8.00	12.8	12.8
Rated torque	M _{rated}	Nm	2.00	4.00	5.40	6.70	10.8	9.50
Max. torque	M _{max}	Nm	10.0	32.0	60.0	60.0	100	100
Rated speed	n _{rated}	rpm	3950	4050	4100	2000	2300	4110
Max. speed	n _{max}	rpm	8000	8000	8000	8000	8000	8000
Rated power	P _{rated}	kW	0.8	1.7	2.3	1.4	2.6	4.1
Standstill current	I _o	А	2.55	4.60	7.70	3.85	6.00	12.0
Rated current	I _{rated}	А	2.40	4.40	5.80	3.30	5.50	10.2
Max. current	I _{max}	А	9.60	17.6	23.2	13.2	22.0	40.8
Rated voltage	V _{rated}	V	390	390	390	390	390	350
Rated frequency	f _{rated}	Hz	140	140	140	70	80	140
Moment of inertia	J	kgcm²	2.40	8.30	19.2	19.2	36.0	36.0
Efficiency	η		0.700	0.750	0.780	0.840	0.860	0.830
Stator terminal resistance	R _{UV 20}	Ω	9.4	3.4	1.5	6	3.04	0.76
Stator terminal resistance	R _{UV 150}	Ω	14.166	5.124	2.261	9.042	4.581	1.145
Mutual inductance	L _H	mH	169.15	92.64	65.8	268.7	176.4	43.4
Stator leakage inductance	L _{1σ}	mH	9.8	5.408	2.493	9.971	6.162	1.536
Rotor leakage inductance	L _{2σ}	mH	10	4.896	2.503	10.016	6.836	1.703
Stator resistance	R _{1, 20}	Ω	4.7	1.7	0.75	3	1.52	0.38
Rotor resistance	R _{2′, 20}	Ω	5.2	1.4	0.781	3.13	1.37	0.342
Weight	m	kg	6.40	10.4	15.1	15.1	22.9	22.9

Technical data
Rated data
Inverter mains connection 400 V, Self-ventilated motors

Motor			MCA 19S42-	MCA 19S23-	MCA 21X42-	MCA 21X25-	
Degree of protection			IPxx	IPxx	IPxx	IPxx	
Standstill torque	M ₀	Nm	22.5	22.5	39.0	39.0	
Rated torque	M _{rated}	Nm	12.0	16.3	17.0	24.6	
Max. torque	M _{max}	Nm	180	180	300	300	
Rated speed	n _{rated}	rpm	4150	2340	4160	2490	
Max. speed	n _{max}	rpm	8000	8000	8000	8000	
Rated power	P _{rated}	kW	5.2	4	7.4	6.4	
Standstill current	I _o	А	19.7	9.85	31.8	15.9	
Rated current	I _{rated}	А	14.0	8.20	19.8	13.5	
Max. current	I _{max}	А	56.0	32.8	79.2	54.0	
Rated voltage	V _{rated}	V	330	390	320	390	
Rated frequency	f _{rated}	Hz	140	80	140	85	
Moment of inertia	J	kgcm²	72.0	72.0	180	180	
Efficiency	η		0.830	0.900	0.840	0.850	
Stator terminal resistance	R _{UV 20}	Ω	0.35	1.38	0.18	0.72	
Stator terminal resistance	R _{UV 150}	Ω	0.527	2.08	0.271	1.085	
Mutual inductance	L _H	mH	27.98	110.6	19.5	78.1	
Stator leakage inductance	L _{1σ}	mH	0.822	3.245	0.563	2.263	
Rotor leakage inductance	L _{2σ}	mH	0.99	3.902	0.701	2.819	
Stator resistance	R _{1, 20}	Ω	0.175	0.69	0.09	0.36	
Rotor resistance	R _{2′, 20}	Ω	0.154	0.616	0.0894	0.358	
Weight	m	kg	44.7	44.7	60.0	60.0	

Rated data Inverter mains connection 400 V, Forced ventilated motors

Inverter mains connection 400 V, Forced ventilated motors

Motor			MCA 13I34-	MCA 14L35-	MCA 14L16-	MCA 17N35-	MCA 17N17-	MCA 19S35-
Degree of protection			IP54	IP54	IP54	IP54	IP54	IP54
Standstill torque	M ₀	Nm	7.00	13.5	13.5	23.9	23.9	40.0
Rated torque	M _{rated}	Nm	6.30	10.8	12.0	19.0	21.5	36.0
Max. torque	M _{max}	Nm	32.0	60.0	60.0	100	100	180
Rated speed	n _{rated}	rpm	3410	3455	1635	3480	1680	3510
Max. speed	n _{max}	rpm	8000	8000	8000	8000	8000	8000
Rated power	P _{rated}	kW	2.2	3.9	2.1	6.9	3.8	13.2
Standstill current	I _o	А	6.30	10.5	5.25	18.1	9.05	30.8
Rated current	I _{rated}	Α	6.00	9.10	4.80	15.8	8.50	28.7
Max. current	I _{max}	А	24.0	36.4	19.2	63.2	34.0	115
Rated voltage	V _{rated}	V	390	390	390	390	390	390
Rated frequency	f _{rated}	Hz	120	120	60	120	60	120
Moment of inertia	J	kgcm²	8.30	19.2	19.2	36.0	36.0	72.0
Efficiency	η		0.720	0.790	0.800	0.810	0.830	0.850
Stator terminal resistance	R _{UV 20}	Ω	3.4	1.5	6	0.76	3.04	0.35
Stator terminal resistance	R _{UV 150}	Ω	5.124	2.261	9.042	1.145	4.581	0.527
Mutual inductance	L _H	mH	76.7	56.7	224.34	36.9	143.66	20.32
Stator leakage inductance	L _{1σ}	mH	4.949	2.365	9.464	1.396	5.585	0.652
Rotor leakage inductance	L _{2σ}	mH	4.392	2.324	9.303	1.51	6.042	0.765
Stator resistance	R _{1, 20}	Ω	1.7	0.75	3	0.38	1.52	0.175
Rotor resistance	R _{2′, 20}	Ω	1.41	0.781	3.13	0.342	1.37	0.154
Weight	m	kg	12.0	16.9	16.9	25.5	25.5	48.2

Technical data

Rated data Inverter mains connection 400 V, Forced ventilated motors

		Motor			MCA 20X14H	MCA 21X35-	MCA 21X17-	MCA 22P29-
Degree of protection			IP54	IP23	IP23	IP54	IP54	IP54
Standstill torque	M ₀	Nm	40.0	68.0	68.0	75.0	75.0	120
Rated torque	M _{rated}	Nm	36.3	53.5	61.0	55.0	61.4	100
Max. torque	M _{max}	Nm	180	250	250	300	300	500
Rated speed	n _{rated}	rpm	1700	2930	1420	3520	1710	2935
Max. speed	n _{max}	rpm	8000	6500	6500	8000	8000	6500
Rated power	P _{rated}	kW	6.4	16.4	9.1	20.3	11	30.7
Standstill current	I ₀	А	15.4	52.0	26.0	49.5	25.8	80.9
Rated current	I _{rated}	А	13.9	42.4	23.0	42.5	22.5	72.1
Max. current	I _{max}	А	55.6	170	92.0	170	90.0	288
Rated voltage	V _{rated}	V	390	350	350	390	390	360
Rated frequency	f _{rated}	Hz	60	100	50	120	60	100
Moment of inertia	J	kgcm²	72.0	171	171	180	180	487
Efficiency	η		0.820	0.870	0.820	0.880	0.850	0.870
Stator terminal resistance	R _{UV 20}	Ω	1.38	0.183	0.731	0.18	0.72	0.089
Stator terminal resistance	R _{UV 150}	Ω	2.08	0.276	1.102	0.271	1.085	0.134
Mutual inductance	L _H	mH	80.92	14.28	60.16	16.8	68.9	22.93
Stator leakage inductance	L _{1σ}	mH	2.608	0.5	2.01	0.519	2.076	0.901
Rotor leakage inductance	L _{2σ}	mH	3.063	0.54	2.14	0.645	2.58	1.213
Stator resistance	R _{1, 20}	Ω	0.69	0.0915	0.365	0.09	0.36	0.134
Rotor resistance	R _{2′, 20}	Ω	0.616	0.09	0.361	0.0894	0.358	0.12
Weight	m	kg	48.2	64	64	63.5	63.5	105

Technical data
Rated data
Inverter mains connection 400 V, Forced ventilated motors

Motor			MCA 22P17-	MCA 22P14-	MCA 22P08-	MCA 22P29H	MCA 22P17H	MCA 22P14H
Degree of protection			IP54	IP54	IP54	IP23	IP23	IP23
Standstill torque	M ₀	Nm	120	120	120	135	135	135
Rated torque	M _{rated}	Nm	106	107	110	110	112	115
Max. torque	M _{max}	Nm	500	500	500	500	500	500
Rated speed	n _{rated}	rpm	1670	1425	760	2935	1670	1425
Max. speed	n _{max}	rpm	6500	6500	6500	6500	6500	6500
Rated power	P _{rated}	kW	18.5	16	8.8	33.8	19.6	17.2
Standstill current	I _o	А	46.7	40.5	23.4	90.2	52.1	45.1
Rated current	I _{rated}	А	42.7	37.7	22.1	77.8	44.5	40.0
Max. current	I _{max}	А	171	151	88.4	311	178	160
Rated voltage	V _{rated}	V	360	350	345	360	360	360
Rated frequency	f _{rated}	Hz	58	50	28	100	58	50
Moment of inertia	J	kgcm²	487	487	487	487	487	487
Efficiency	η		0.880	0.870	0.800	0.890	0.880	0.860
Stator terminal resistance	R _{UV 20}	Ω	0.268	0.357	1.072	0.089	0.268	0.357
Stator terminal resistance	R _{UV 150}	Ω	0.404	0.538	1.616	0.134	0.404	0.538
Mutual inductance	L _H	mH	23.35	94.23	94.89	22.9	23.46	90.94
Stator leakage inductance	L _{1σ}	mH	0.901	3.601	3.56	0.901	0.902	3.552
Rotor leakage inductance	L _{2σ}	mH	1.214	4.852	4.802	1.214	1.215	4.794
Stator resistance	R _{1, 20}	Ω	0.134	0.536	0.536	0.134	0.134	0.536
Rotor resistance	R _{2′, 20}	Ω	0.12	0.477	0.477	0.12	0.12	0.477
Weight	m	kg	105	105	105	105	105	105

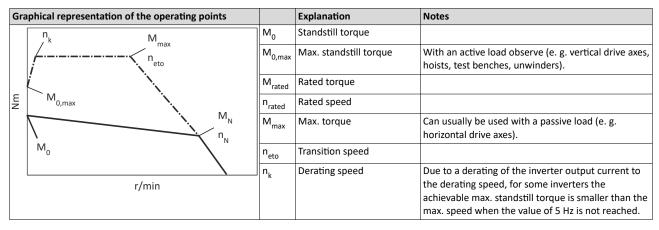
Rated data Inverter mains connection 400 V, Forced ventilated motors

Motor			MCA 22P08H	MCA 26T22-	MCA 26T12-	MCA 26T10-	MCA 26T05-	MCA 26T22H
Degree of protection			IP23	IP54	IP54	IP54	IP54	IP23
Standstill torque	M ₀	Nm	135	220	220	220	220	290
Rated torque	M _{rated}	Nm	120	195	207	210	216	230
Max. torque	M _{max}	Nm	500	1100	1100	1100	1100	1100
Rated speed	n _{rated}	rpm	760	2235	1200	1030	550	2235
Max. speed	n _{max}	rpm	6500	5500	5500	5500	5500	5500
Rated power	P _{rated}	kW	9.6	45.6	26	22.7	12.4	53.8
Standstill current	I ₀	А	26.0	125	78.4	62.9	35.4	160
Rated current	I _{rated}	А	23.5	113	75.1	61.5	34.9	127
Max. current	I _{max}	А	94.0	452	300	246	140	507
Rated voltage	V _{rated}	V	355	340	350	350	350	340
Rated frequency	f _{rated}	Hz	28	76	41	35	19	76
Moment of inertia	J	kgcm²	487	1340	1340	1340	1340	1340
Efficiency	η		0.800	0.920	0.870	0.880	0.830	0.920
Stator terminal resistance	R _{UV 20} °C	Ω	1.072	0.05	0.15	0.196	0.589	0.05
Stator terminal resistance	R _{UV 150} °C	Ω	1.616	0.075	0.226	0.295	0.888	0.075
Mutual inductance	L _H	mH	91.93	19.84	18.1	69.24	66.8	20.2
Stator leakage inductance	L _{1σ}	mH	3.5	0.778	0.74	2.932	2.862	0.78
Rotor leakage inductance	L _{2σ}	mH	4.738	1.29	1.29	5.117	5.037	1.3
Stator resistance	R _{1, 20}	Ω	0.536	0.075	0.075	0.294	0.294	0.075
Rotor resistance	R _{2′, 20}	Ω	0.477	0.0621	0.0621	0.25	0.25	0.0621
Weight	m	kg	105	194	194	194	194	194

Rated data Inverter mains connection 400 V, Forced ventilated motors

MCA 26T10H MCA 26T05H Motor MCA 26T12H Degree of protection IP23 IP23 IP23 Standstill torque M₀ Nm 290 290 290 255 260 280 Rated torque $\mathsf{M}_{\mathsf{rated}}$ Nm Max. torque $\mathsf{M}_{\mathsf{max}}$ Nm 1100 1100 1100 Rated speed 1030 550 rpm 1200 n_{rated} Max. speed 5500 5500 5500 $\mathsf{n}_{\mathsf{max}}$ rpm kW Rated power 32 28 16.1 $\mathsf{P}_{\mathsf{rated}}$ Standstill current 101 78.0 44.0 I₀ Α Rated current Α 83.3 69.6 42.4 l rated Max. current Α 333 278 170 l_{max} ٧ 350 350 Rated voltage V_{rated} 350 Rated frequency Hz 41 36 20 $\mathsf{f}_{\mathsf{rated}}$ Moment of inertia kgcm² 1340 1340 1340 Efficiency 0.870 0.870 0.810 η Stator terminal resistance 0.15 0.196 0.589 $R_{\rm UV\,20}$ Stator terminal resistance 0.226 0.295 0.888 R_{UV 150} Ω °C Mutual inductance L_H 18.64 71.4 72.1 mΗ Stator leakage inductance mΗ 0.78 3.165 3.112 $L_{1\sigma}$ Rotor leakage inductance 1.3 5.135 5.08 $L_{2\sigma}$ mH 0.294 Stator resistance R_{1, 20} Ω 0.075 0.294 Rotor resistance 0.0621 0.25 0.25 R_{2′, 20} Ω Weight 194 194 194 m kg

Selection tables



Selection tables

Notes on the selection tables

The selection tables represent the combinations of servo motors and servo inverters. The serve as a rough overview.

In the case of the servo inverters, the overload capacity depending on the switching frequency in the default setting is taken into consideration. For more information, please refer to the inverter documentation.

Derating speed

Motor	Derating speed
	n _k
	rpm
MCA10	
MCA13	
MCA14	
MCA17	
MCA19	150
MCA20	
MCA21	
MCA22	
MCA26	

9400 HighLine servo drives

The data apply to a mains voltage of $3x\ 400\ V$ and a switching frequency of 4 kHz of the inverter.

Non-ventilated motors

Motor						Inverter			
						E94A □□			
			E0024	E0034	E0044	E0074	E0094	E0134	E0174
MCA10I40-					•	•		•	•
Standstill torque	M ₀	Nm	1.1	2.3					
Rated torque	M _{rated}	Nm	1.0	2.0					
Max. standstill torque	M _{0,max}	Nm	6.9	10.0					
Max. torque	M _{max}	Nm	6.9	10.0					
MCA13I41-		-			-	-		I	
Standstill torque	M ₀	Nm			4.6	4.6			
Rated torque	M _{rated}	Nm			4.0	4.0			
Max. standstill torque	M _{0,max}	Nm			18.9	20.8			
Max. torque	M _{max}	Nm			18.9	20.8			
MCA14L20-		-							
Standstill torque	M ₀	Nm		5.1	8.0				
Rated torque	M _{rated}	Nm		4.4	6.7				
Max. standstill torque	M _{0,max}	Nm		25.0	42.8				
Max. torque	M _{max}	Nm		25.0	42.8				
MCA14L41-									
Standstill torque	M ₀	Nm			3.5	8.0	8.0		
Rated torque	M _{rated}	Nm			3.5	5.4	5.4		
Max. standstill torque	M _{0,max}	Nm			21.5	27.0	31.3		
Max. torque	M _{max}	Nm			21.5	27.0	31.3		
MCA17N23-									
Standstill torque	M ₀	Nm			9.5	12.8			
Rated torque	M _{rated}	Nm			9.0	10.8			
Max. standstill torque	M _{0,max}	Nm			38.0	50.0			
Max. torque	M _{max}	Nm			38.0	50.0			
MCA17N41-		-			1	-			-
Standstill torque	M ₀	Nm				7.1	11.5	12.8	12.8
Rated torque	M _{rated}	Nm				6.7	9.5	9.5	9.5
Max. standstill torque	M _{0,max}	Nm				24.0	33.3	45.8	49.9
Max. torque	M _{max}	Nm				24.0	33.3	45.8	49.9

Technical data Selection tables

Motor					Inverter		
					E94A □□		
			E0074	E0094	E0134	E0174	E0244
MCA19S23-					•		
Standstill torque	M ₀	Nm	18.4	22.5	22.5		
Rated torque	M _{rated}	Nm	15.6	16.3	16.3		
Max. standstill torque	M _{0,max}	Nm	55.0	73.7	86.0		
Max. torque	M _{max}	Nm	55.0	73.7	86.0		
MCA19S42-						1	
Standstill torque	M ₀	Nm			15.0	22.5	22.5
Rated torque	M _{rated}	Nm			12.0	12.0	12.0
Max. standstill torque	M _{0,max}	Nm			48.8	62.0	70.0
Max. torque	M _{max}	Nm			48.8	62.0	70.0
MCA21X25-						1	
Standstill torque	M ₀	Nm		21.4	39.0	39.0	39.0
Rated torque	M _{rated}	Nm		19.6	24.6	24.6	24.6
Max. standstill torque	M _{0,max}	Nm		71.7	96.0	126.0	136.0
Max. torque	M _{max}	Nm		71.7	96.0	126.0	136.0
MCA21X42-							
Standstill torque	M ₀	Nm				31.3	39.0
Rated torque	M _{rated}	Nm				17.0	17.0
Max. standstill torque	M _{0,max}	Nm				71.7	91.0
Max. torque	M _{max}	Nm				71.7	91.0

Forced ventilated IP54 motors

Motor					Inve	erter		
					E94	A□□		
			E0044	E0074	E0094	E0134	E0174	E0244
MCA13I34-					•			
Standstill torque	M ₀	Nm	4.6	7.0	7.0			
Rated torque	M _{rated}	Nm	4.4	6.3	6.3			
Max. standstill torque	M _{0,max}	Nm	20.8	26.0	29.2			
Max. torque	M _{max}	Nm	20.8	26.0	29.2			
MCA14L16-				1	1	'		
Standstill torque	M ₀	Nm	12.0	13.5				
Rated torque	M _{rated}	Nm	12.0	12.0				
Max. standstill torque	M _{0,max}	Nm	45.4	52.6				
Max. torque	M _{max}	Nm	45.4	52.6				
MCA14L35-		_		l				
Standstill torque	M ₀	Nm		10.1	13.5	13.5		
Rated torque	M _{rated}	Nm		9.7	10.8	10.8		
Max. standstill torque	M _{0,max}	Nm		32.4	46.0	60.0		
Max. torque	M _{max}	Nm		32.4	46.0	60.0		
MCA17N17-		-		1	1	'		
Standstill torque	M ₀	Nm		21.6	23.9	23.9		
Rated torque	M _{rated}	Nm		21.5	21.5	21.5		
Max. standstill torque	M _{0,max}	Nm		59.4	81.4	84.5		
Max. torque	M _{max}	Nm		59.4	81.4	84.5		
MCA17N35-								•
Standstill torque	M _o	Nm				19.4	23.9	23.9
Rated torque	M _{rated}	Nm				19.0	19.0	19.0
Max. standstill torque	M _{0,max}	Nm				59.2	75.0	90.0
Max. torque	M _{max}	Nm				59.2	75.0	90.0

Technical data Selection tables

Motor						Inverter			
						E94A □□			
			E0134	E0174	E0244	E0324	E0474	E0594	E0864
MCA19S17-									
Standstill torque	M ₀	Nm	40.0	40.0	40.0				
Rated torque	M _{rated}	Nm	36.3	36.3	36.3				
Max. standstill torque	M _{0,max}	Nm	105.0	133.0	148.0				
Max. torque	M _{max}	Nm	105.0	133.0	148.0				
MCA19S35-									
Standstill torque	M ₀	Nm			36.9	40.0	40.0	40.0	
Rated torque	M _{rated}	Nm			36.0	36.0	36.0	36.0	
Max. standstill torque	M _{0,max}	Nm			82.0	112.0	132.0	160.0	
Max. torque	M _{max}	Nm			82.0	112.0	132.0	160.0	
MCA21X17-									
Standstill torque	M ₀	Nm		54.4	75.0	75.0	75.0		
Rated torque	M _{rated}	Nm		50.4	61.4	61.4	61.4		
Max. standstill torque	M _{0,max}	Nm		134.0	158.0	215.0	246.0		
Max. torque	M _{max}	Nm		134.0	158.0	215.0	246.0		
MCA21X35-		-		1	1		1		1
Standstill torque	M ₀	Nm					63.9	75.0	75.0
Rated torque	M _{rated}	Nm					55.0	55.0	55.0
Max. standstill torque	M _{0,max}	Nm					134.0	167.0	232.0
Max. torque	M _{max}	Nm					134.0	167.0	232.0

The data apply to a mains voltage of $3x\ 400\ V$ and a switching frequency of $8\ kHz$ of the inverter.

If the motors are operated at a lower switching frequency, please get in touch with your Lenze representative!

When operating at 4 kHz, the motor generates just 95 % of its rated torque with increased noise emissions.

Motor							Inverter				
							E94A □□				
			E0174	E0244	E0324	E0474	E0594	E0864	E1044	E1454	E1724
MCA22P08-					•						
Standstill torque	M ₀	Nm	64.0	110.0	120.0						
Rated torque	M _{rated}	Nm	64.0	110.0	110.0						
Max. standstill torque	M _{0,max}	Nm	261.0	313.0	402.0						
Max. torque	M _{max}	Nm	261.0	313.0	402.0						
MCA22P14-					1						
Standstill torque	M ₀	Nm			82.0	120.0	120.0				
Rated torque	M _{rated}	Nm			82.0	107.0	107.0				
Max. standstill torque	M _{0,max}	Nm			242.0	300.0	372.0				
Max. torque	M _{max}	Nm			242.0	300.0	372.0				
MCA22P17-									l		
Standstill torque	M ₀	Nm					99.0	120.0			
Rated torque	M _{rated}	Nm					99.0	106.0			
Max. standstill torque	M _{0,max}	Nm					325.0	463.0			
Max. torque	M _{max}	Nm					325.0	463.0			
MCA22P29-					1	ı			ı		1
Standstill torque	M _o	Nm							110.0	120.0	120.0
Rated torque	M _{rated}	Nm							100.0	100.0	100.0
Max. standstill torque	M _{0,max}	Nm							335.0	416.0	465.0
Max. torque	M _{max}	Nm							335.0	416.0	465.0

Technical data Selection tables

Motor							Inverter				
							E94A □□				
			E0324	E0474	E0594	E0864	E1044	E1454	E1724	E2024	E2454
MCA26T05-											
Standstill torque	M ₀	Nm	191.0	220.0	220.0	220.0					
Rated torque	M _{rated}	Nm	191.0	216.0	216.0	216.0					
Max. standstill torque	M _{0,max}	Nm	531.0	665.0	826.0	1010.0					
Max. torque	M _{max}	Nm	531.0	665.0	826.0	1010.0					
MCA26T10-											
Standstill torque	M ₀	Nm			77.0	220.0	220.0	220.0			
Rated torque	M _{rated}	Nm			77.0	210.0	210.0	210.0			
Max. standstill torque	M _{0,max}	Nm			472.0	713.0	855.0	1044.0			
Max. torque	M _{max}	Nm			472.0	713.0	855.0	1044.0			
MCA26T12-								1			
Standstill torque	M ₀	Nm				204.0	219.0	220.0	220.0		
Rated torque	M _{rated}	Nm				204.0	207.0	207.0	207.0		
Max. standstill torque	M _{0,max}	Nm				502.0	609.0	739.0	819.0		
Max. torque	M _{max}	Nm				502.0	609.0	739.0	819.0		
MCA26T22-		-			I.	I.			I	1	
Standstill torque	M ₀	Nm						154.0	211.0	220.0	220.0
Rated torque	M _{rated}	Nm						154.0	195.0	195.0	195.0
Max. standstill torque	M _{0,max}	Nm						523.0	611.0	711.0	843.0
Max. torque	M _{max}	Nm						523.0	611.0	711.0	843.0

Forced ventilated IP23s motors

Motor							Inverter				
							E94A □□				
			E0174	E0244	E0324	E0474	E0594	E0864	E1044	E1454	E1724
MCA20X14H											
Standstill torque	M ₀	Nm	32.5	66.0							
Rated torque	M _{rated}	Nm	32.5	61.0							
Max. standstill torque	M _{0,max}	Nm	154.2	190.0							
Max. torque	M _{max}	Nm	154.2	190.0							
MCA20X29H											
Standstill torque	M ₀	Nm			28.0	51.6	51.6				
Rated torque	M _{rated}	Nm			28.0	51.6	51.6				
Max. standstill torque	M _{0,max}	Nm			116.0	148.2	192.8				
Max. torque	M _{max}	Nm			116.0	148.2	192.8				
MCA22P08H	IIIdx										
Standstill torque	M ₀	Nm		120.0	135.0						
Rated torque	M _{rated}	Nm		120.0	120.0						
Max. standstill torque	M _{0,max}	Nm		313.0	402.0						
Max. torque	M _{max}	Nm		313.0	402.0						
MCA22P14H	max										
Standstill torque	M ₀	Nm				118.0	118.0				
Rated torque	M _{rated}	Nm				115.0	115.0				
Max. standstill torque	M _{0,max}	Nm				300.0	372.0				
Max. torque	M _{max}	Nm				300.0	372.0				
MCA22P17H	max	1									
Standstill torque	M _o	Nm					99.0	135.0			
Rated torque	M _{rated}	Nm					99.0	112.0			
Max. standstill torque	M _{0,max}	Nm					325.0	463.0			
Max. torque	M _{max}	Nm					325.0	463.0			
MCA22P29H	max	1.4					323.0	103.0			
Standstill torque	M _o	Nm							110.0	135.0	135.0
Rated torque	-	Nm							110.0	110.0	110.0
Max. standstill torque	M _{rated}	Nm							335.0	416.0	486.0
Max. torque	M _{0,max}	Nm							335.0	416.0	486.0
	M _{max}	INIII							333.0	410.0	400.0
MCA26T05H Standstill torque	N/A	Nm				268.0	268.0	290.0			1
	M ₀										
Rated torque	M _{rated}	Nm				268.0	268.0	280.0			
Max. standstill torque	M _{0,max}	Nm				665.0	826.0	1100.0			
Max. torque	M _{max}	Nm				665.0	826.0	1100.0			
MCA26T10H		1						272.2	202.2	202.2	Τ
Standstill torque	M ₀	Nm						270.0	290.0	290.0	
Rated torque	M _{rated}	Nm						260.0	260.0	260.0	
Max. standstill torque	M _{0,max}	Nm						713.0	855.0	1044.0	
Max. torque	M _{max}	Nm						713.0	855.0	1044.0	

Technical data Selection tables

8400 TopLine inverter drives

The data apply to a mains voltage of 3x 400 V and a switching frequency of 8 kHz of the inverter.

Non-ventilated motors

Motor							Inve	erter				
							E84A	NTC□				
			5514	7514	1124	1524	2224	3024	4024	5524	7524	1134
MCA10I40-												
Standstill torque	M ₀	Nm	-	2.3	2.3	2.3	2.3					
Rated torque	M _{rated}	Nm	-	1.9	1.9	1.9	1.9					
Max. standstill torque	M _{0,max}	Nm	4.2	5.8	8.0	9.8	10.0					
Max. torque	M _{max}	Nm	4.2	5.8	8.0	9.8	10.0					
MCA13I41-						ı						
Standstill torque	M ₀	Nm			-	-	4.6	4.6	4.6			
Rated torque	M _{rated}	Nm			-	-	4.0	4.0	4.0			
Max. standstill torque	M _{0,max}	Nm			7.6	9.6	14.3	18.9	22.9			
Max. torque	M _{max}	Nm			7.6	9.6	14.3	18.9	22.9			
MCA14L20-		1		1	I.	I.	1		1	I		
Standstill torque	M ₀	Nm		-	-	8.0	8.0	8.0				
Rated torque	M _{rated}	Nm		-	-	6.7	6.7	6.7				
Max. standstill torque	M _{0,max}	Nm		11.6	16.2	20.1	29.4	34.7				
Max. torque	M _{max}	Nm		11.6	16.2	20.1	29.4	34.7				
MCA14L41-												
Standstill torque	M ₀	Nm					-	8.0	8.0	8.0		
Rated torque	M _{rated}	Nm					-	5.4	5.4	5.4		
Max. standstill torque	M _{0,max}	Nm					14.1	19.0	25.1	31.0		
Max. torque	M _{max}	Nm					14.1	19.0	25.1	31.0		
MCA17N23-					I.	I		1	-			
Standstill torque	M ₀	Nm				-	12.8	12.8	12.8	12.8		
Rated torque	M _{rated}	Nm				-	10.8	10.8	10.8	10.8		
Max. standstill torque	M _{0,max}	Nm				17.1	25.3	33.3	43.8	51.1		
Max. torque	M _{max}	Nm				17.1	25.3	33.3	43.8	51.1		
MCA17N41-					l	I		1				
Standstill torque	M ₀	Nm						-	-	12.8	12.8	12.8
Rated torque	M _{rated}	Nm						-	-	9.5	9.5	9.5
Max. standstill torque	M _{0,max}	Nm						16.5	22.3	31.1	39.9	49.5
Max. torque	M _{max}	Nm						16.5	22.3	31.1	39.9	49.5

Motor Inverter E84AVTC 3024 4024 5524 7524 1134 1534 1834 MCA19S23-Standstill torque M_0 Nm 22.5 22.5 22.5 $\mathsf{M}_{\mathsf{rated}}$ 16.3 16.3 16.3 Rated torque Nm -Max. standstill torque Nm 32.8 43.6 60.9 77.5 ${\rm M}_{\rm 0,max}$ Max. torque 43.7 61.0 \mathbf{M}_{max} Nm 32.8 77.5 MCA19S42-Standstill torque 22.5 22.5 M_0 Nm 22.5 Rated torque 12.0 $\mathbf{M}_{\text{rated}}$ Nm -12.0 12.0 Max. standstill torque M_{0,max} Nm 28.5 37.0 53.7 64.7 Max. torque $\mathsf{M}_{\mathsf{max}}$ 64.7 Nm 28.5 37.0 53.8 MCA21X25-Standstill torque M_o Nm 39.0 39.0 39.0 Rated torque $\mathsf{M}_{\mathsf{rated}}$ Nm 24.5 24.5 24.5 Max. standstill torque 97.3 $\boldsymbol{\mathsf{M}}_{\mathrm{0,max}}$ Nm 33.6 46.7 59.3 85.9 Max. torque \mathbf{M}_{max} Nm 33.6 46.7 59.3 85.9 97.6 MCA21X42-Standstill torque M_0 39.0 39.0 39.0 Nm Rated torque $\mathbf{M}_{\mathrm{rated}}$ Nm 17.0 17.0 17.0 Max. standstill torque M_{0,max} Nm 35.3 52.2 72.1 88.5 Max. torque \mathbf{M}_{max} 35.3 52.2 72.1 88.5 Nm

Technical data Selection tables

Forced ventilated IP54 motors

Motor						Inve	erter			
						E84 <i>A</i>	NTC:			
			1524	2224	3024	4024	5524	7524	1134	1534
MCA13I34-										
Standstill torque	M ₀	Nm		-	7.0	7.0	7.0			
Rated torque	M _{rated}	Nm		-	6.2	6.2	6.2			
Max. standstill torque	M _{0,max}	Nm		16.0	21.4	28.2	32.0			
Max. torque	M _{max}	Nm		16.0	21.4	28.2	32.0			
MCA14L16-										
Standstill torque	M ₀	Nm	-	13.5	13.5	13.5				
Rated torque	M _{rated}	Nm	-	12.3	12.3	12.3				
Max. standstill torque	M _{0,max}	Nm	23.4	34.7	45.5	50.8				
Max. torque	M _{max}	Nm	23.4	34.7	45.5	50.8				
MCA14L35-										
Standstill torque	M ₀	Nm			-	13.5	13.5	13.5	13.5	
Rated torque	M _{rated}	Nm			-	10.8	10.8	10.8	10.8	
Max. standstill torque	M _{0,max}	Nm			21.1	28.4	39.8	51.1	56.5	
Max. torque	M _{max}	Nm			21.1	28.4	39.8	51.1	56.6	
MCA17N17-										
Standstill torque	M ₀	Nm			-	23.9	23.9	23.9		
Rated torque	M _{rated}	Nm			-	21.6	21.6	21.6		
Max. standstill torque	M _{0,max}	Nm			42.1	55.9	77.5	93.3		
Max. torque	M _{max}	Nm			42.2	56.0	77.5	93.3		
MCA17N35-				1						1
Standstill torque	M ₀	Nm					-	23.9	23.9	23.9
Rated torque	M _{rated}	Nm					-	18.9	18.9	18.9
Max. standstill torque	M _{0,max}	Nm					38.0	49.5	72.5	97.8
Max. torque	M _{max}	Nm					38.0	49.5	72.5	97.8

Motor Inverter E84AVTC 5524 7524 1134 1834 2234 3034 3734 4534 1534 MCA19S17-Standstill torque M_0 Nm 40.0 40.0 40.0 M_{rated} 36.0 36.0 36.0 Rated torque Nm Max. standstill torque Nm 71.6 94.7 138.9 165.2 ${\rm M}_{\rm 0,max}$ Max. torque \mathbf{M}_{max} Nm 71.6 94.7 139.0 165.3 MCA19S35-Standstill torque 40.0 40.0 40.0 40.0 M_0 Nm Rated torque 35.9 35.9 35.9 35.9 $\mathbf{M}_{\text{rated}}$ Nm -Max. standstill torque M_{0,max} Nm 55.1 78.8 97.8 112.8 146.2 Max. torque 146.2 \mathbf{M}_{max} Nm 55.1 78.8 97.8 112.9 MCA21X17-Standstill torque M_o Nm 75.0 75.0 75.0 75.0 Rated torque M_{rated} Nm 61.4 61.4 61.4 61.4 Max. standstill torque ${\rm M}_{\rm 0,max}$ 198.5 277.2 Nm 99.0 143.7 242.2 Max. torque \mathbf{M}_{max} Nm 99.0 144.0 198.7 242.3 277.2 MCA21X35-Standstill torque 75.0 75.0 75.0 M_0 Nm 75.0 Rated torque $\mathbf{M}_{\mathrm{rated}}$ Nm 55.1 55.1 55.1 55.1 Max. standstill torque M_{0,max} Nm 97.5 120.6 138.5 177.5 216.7 267.8 Max. torque 97.5 120.6 138.6 178.0 217.5 269.8 Nm \mathbf{M}_{max}

Selection tables

The data apply to a mains voltage of $3x\ 400\ V$ and a switching frequency of $8\ kHz$ of the inverter.

If the motors are operated at a lower switching frequency, please get in touch with your Lenze representative!

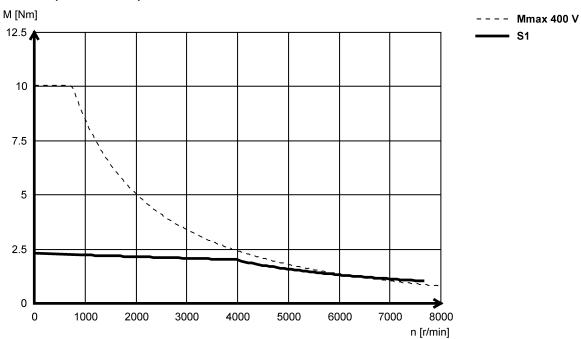
When operating at 4 kHz, the motor generates just 95 % of its rated torque with increased noise emissions.

Motor			Inverter									
			E84AVTC□									
			5524	7524	1134	1534	1834	2234	3034	3734	4534	
MCA22P08-						•				•		
Standstill torque	M ₀	Nm		-	120.0	120.0	120.0	120.0				
Rated torque	M _{rated}	Nm		-	110.6	110.6	110.6	110.6				
Max. standstill torque	M _{0,max}	Nm		157.8	233.4	323.3	396.6	394.3				
Max. torque	M _{max}	Nm		157.8	233.5	323.3	396.6	394.3				
MCA22P14-												
Standstill torque	M ₀	Nm				-	120.0	120.0	120.0	120.0	120.0	
Rated torque	M _{rated}	Nm				-	107.2	107.2	107.2	107.2	107.2	
Max. standstill torque	M _{0,max}	Nm				186.5	232.5	268.8	345.7	422.7	458.8	
Max. torque	M _{max}	Nm				186.7	232.7	269.0	346.3	423.7	460.9	
MCA22P17-												
Standstill torque	M ₀	Nm				-	-	120.0	120.0	120.0	120.0	
Rated torque	M _{rated}	Nm				-	-	105.8	105.8	105.8	105.8	
Max. standstill torque	M _{0,max}	Nm				162.7	204.2	236.9	307.8	374.9	461.2	
Max. torque	M _{max}	Nm				162.7	204.2	237.1	308.3	377.0	462.4	
MCA22P29-												
Standstill torque	M ₀	Nm							-	120.0	120.0	
Rated torque	M _{rated}	Nm							-	99.9	99.9	
Max. standstill torque	M _{0,max}	Nm							180.5	224.5	270.5	
Max. torque	M _{max}	Nm							180.8	226.0	271.4	

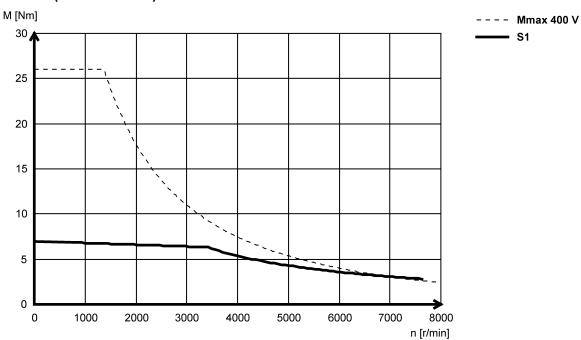
Forced ventilated IP23s motors

Motor			Inverter									
			E84AVTC□									
			7524	1134	1534	1834	2234	3034	3734	4534		
MCA20X14H					1							
Standstill torque	M ₀	Nm	-	67.0	68.0	68.0	68.0					
Rated torque	M _{rated}	Nm	-	61.2	61.2	61.2	61.2					
Max. standstill torque	M _{0,max}	Nm	94.8	139.9	192.6	235.5	250.0					
Max. torque	M _{max}	Nm	94.9	139.9	192.8	235.7	250.0					
MCA20X29H												
Standstill torque	M ₀	Nm			-	-	57.0	68.0	68.0	68.0		
Rated torque	M _{rated}	Nm			-	-	53.4	53.4	53.4	53.4		
Max. standstill torque	M _{0,max}	Nm			96.8	121.2	140.3	182.5	222.1	250.0		
Max. torque	M _{max}	Nm			96.8	121.2	140.4	182.6	223.0	250.0		
MCA22P08H		-										
Standstill torque	M _o	Nm	-	135.0	135.0	135.0	135.0					
Rated torque	M _{rated}	Nm	-	120.6	120.6	120.6	120.6					
Max. standstill torque	M _{0,max}	Nm	157.8	234.2	325.4	401.4	400.9					
Max. torque	M _{max}	Nm	157.8	234.8	325.8	401.4	400.9					
MCA22P14H		1					-		1			
Standstill torque	M ₀	Nm			-	-	135.0	135.0	135.0	135.0		
Rated torque	M _{rated}	Nm			-	-	115.3	115.3	115.3	115.3		
Max. standstill torque	M _{0,max}	Nm			188.4	235.1	270.8	350.2	425.8	493.6		
Max. torque	M _{max}	Nm			188.7	235.1	271.0	350.3	428.1	496.1		
MCA22P17H												
Standstill torque	M ₀	Nm			-	-	135.0	135.0	135.0	135.0		
Rated torque	M _{rated}	Nm			-	-	112.1	112.1	112.1	112.1		
Max. standstill torque	M _{0,max}	Nm			163.1	204.6	237.9	309.7	376.9	463.1		
Max. torque	M _{max}	Nm			163.1	204.6	238.2	310.6	379.0	465.2		
MCA22P29H		1			l				I.			
Standstill torque	M ₀	Nm						-	-	135.0		
Rated torque	M _{rated}	Nm						-	-	110.0		
Max. standstill torque	M _{0,max}	Nm						180.0	224.4	268.2		
Max. torque	M _{max}	Nm						180.7	225.0	269.4		
		1	1	1	1	1	1	1	1			

Torque characteristics

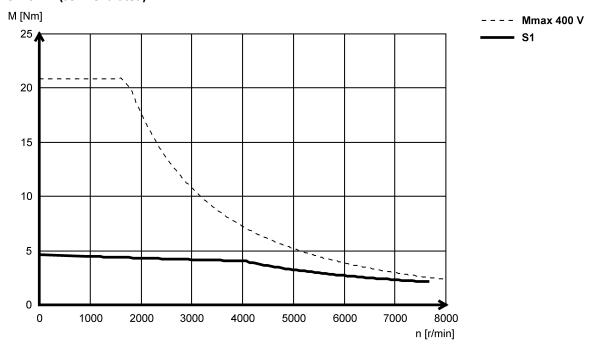

The torque/speed characteristic for your motor/inverter combination can be found on the Internet:

http://www.lenze.com → Product Finder → M-n characteristics

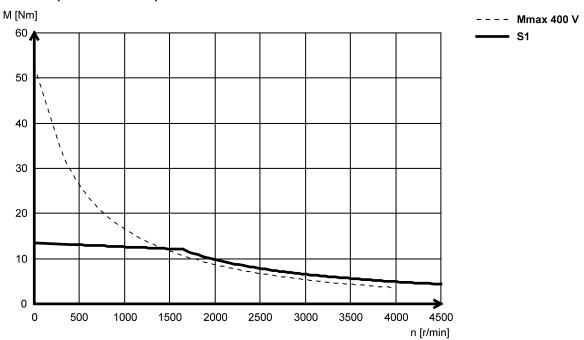


The following data apply to a mains voltage 3 x 400 V of the inverter.

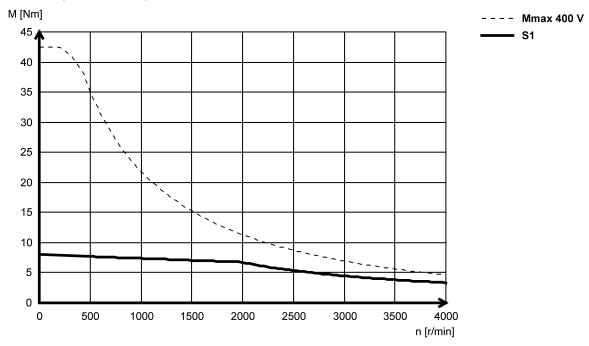
MCA10I40- (self-ventilated)

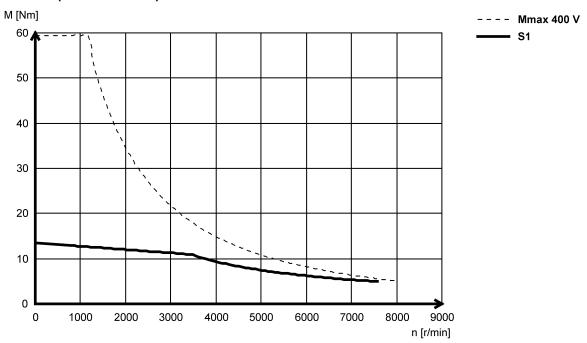


MCA13I34- (forced ventilated)

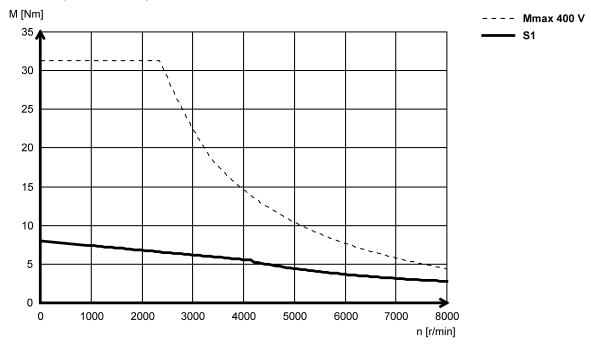


MCA13I41- (self-ventilated)

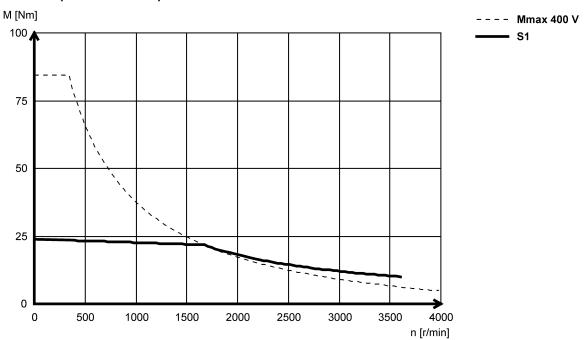

MCA14L16- (forced ventilated)


Torque characteristics

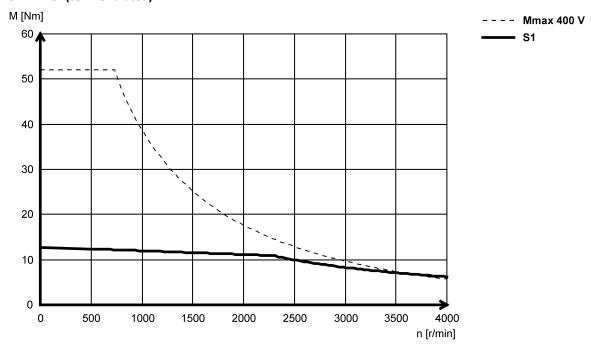
MCA14L20- (self-ventilated)

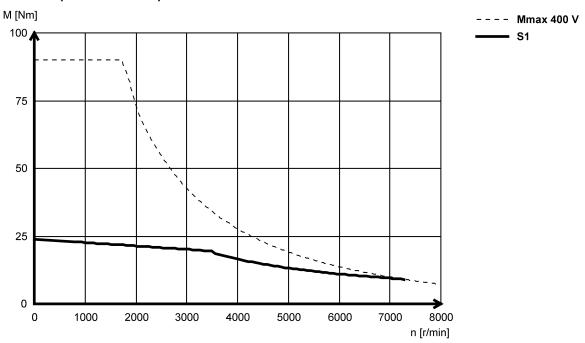


MCA14L35- (forced ventilated)

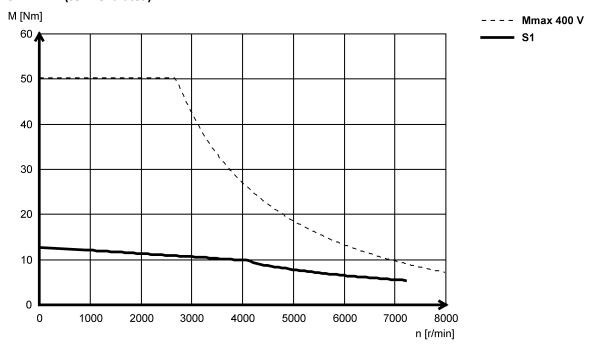


MCA14L41- (self-ventilated)

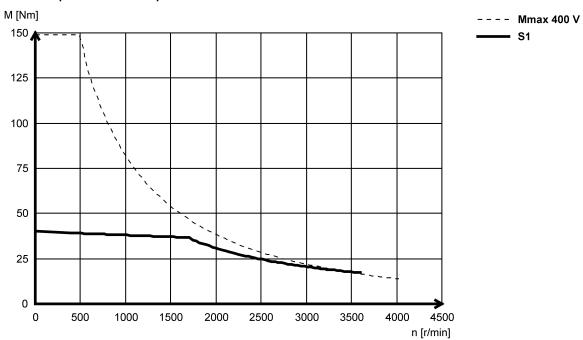

MCA17N17- (forced ventilated)


Torque characteristics

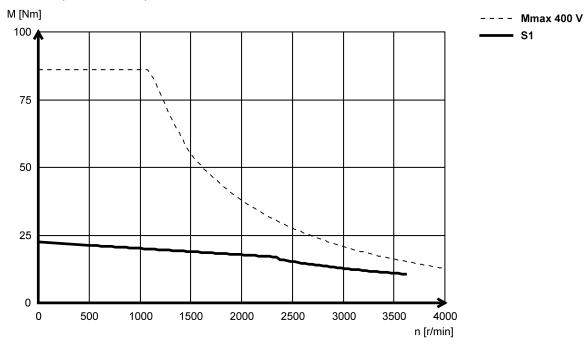
MCA17N23- (self-ventilated)

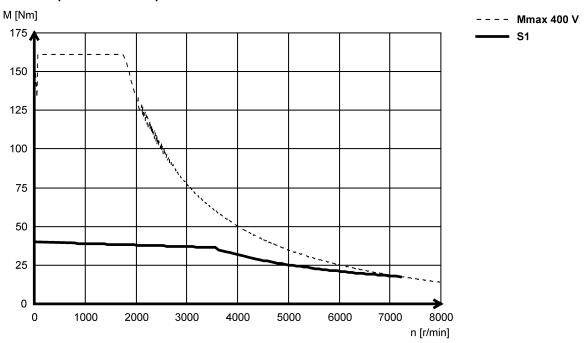


MCA17N35- (forced ventilated)

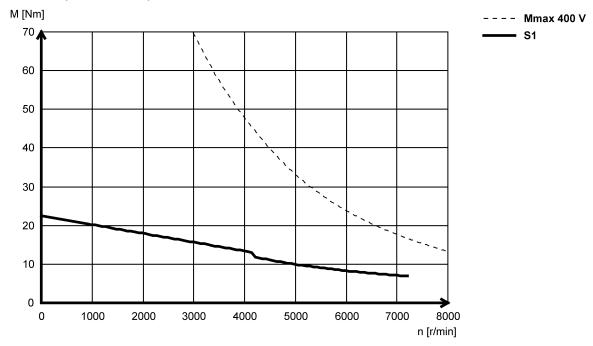


MCA17N41- (self-ventilated)

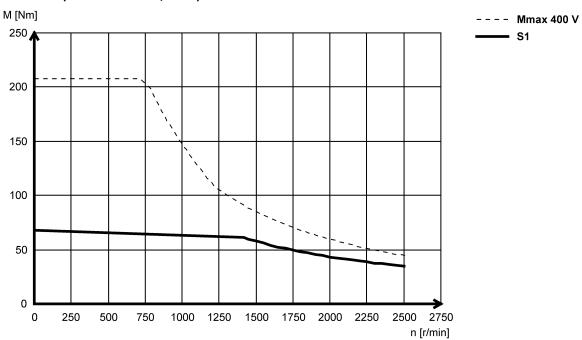

MCA19S17- (forced ventilated)


Torque characteristics

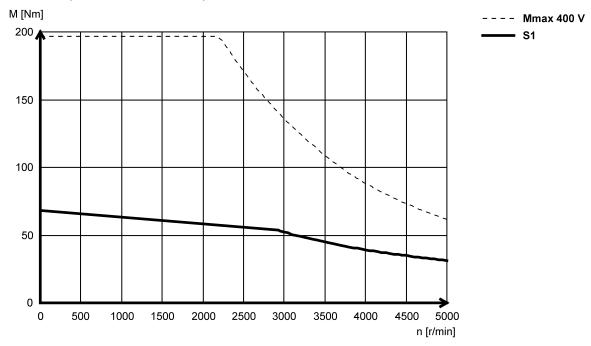
MCA19S23- (self-ventilated)

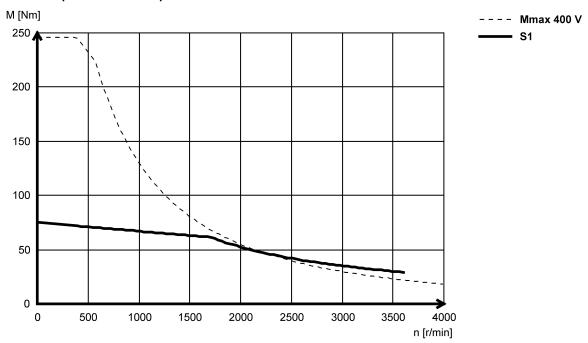


MCA19S35- (forced ventilated)

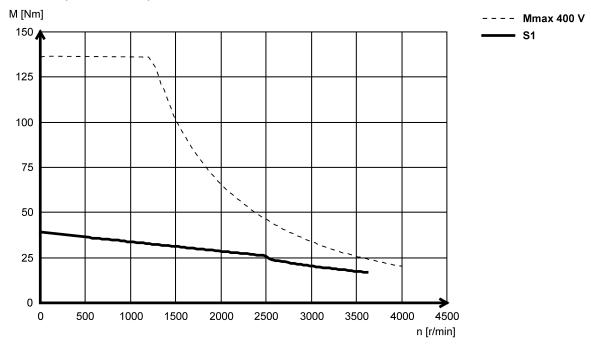


MCA19S42- (self-ventilated)


MCA20X14H (forced ventilated, IP23s)

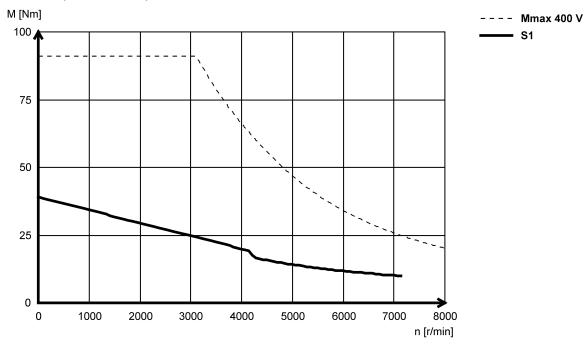

Torque characteristics

MCA20X29H (forced ventilated, IP23s)



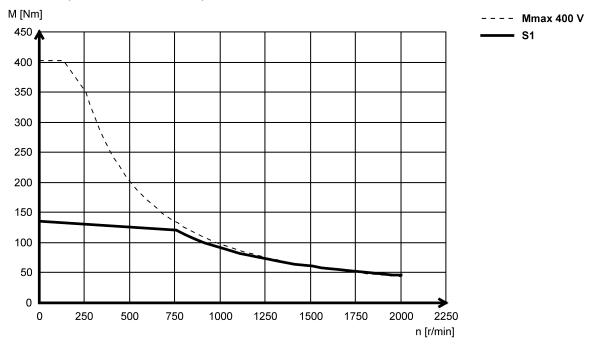
MCA21X17- (forced ventilated)

MCA21X25- (self-ventilated)

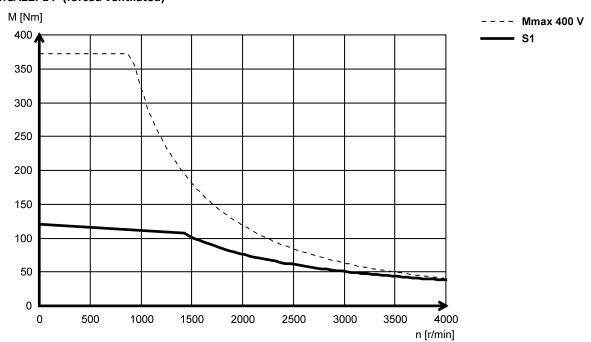

MCA21X35- (forced ventilated)

Torque characteristics

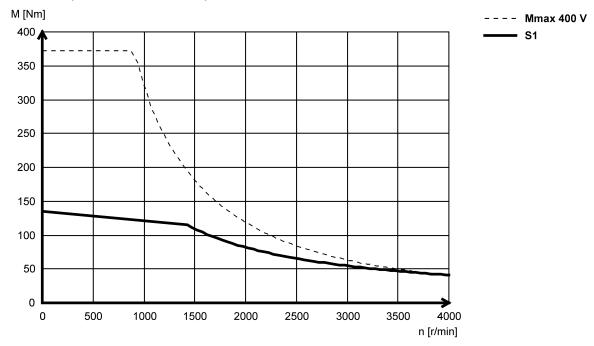
MCA21X42- (self-ventilated)

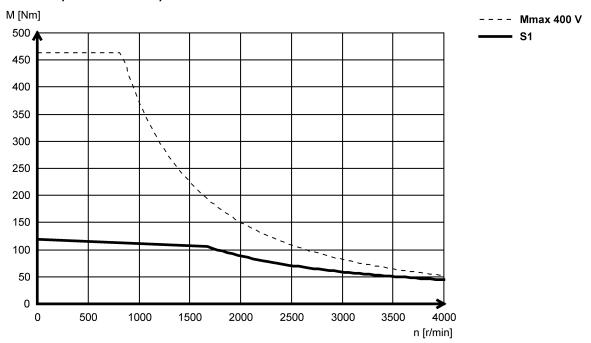


MCA22P08- (forced ventilated)

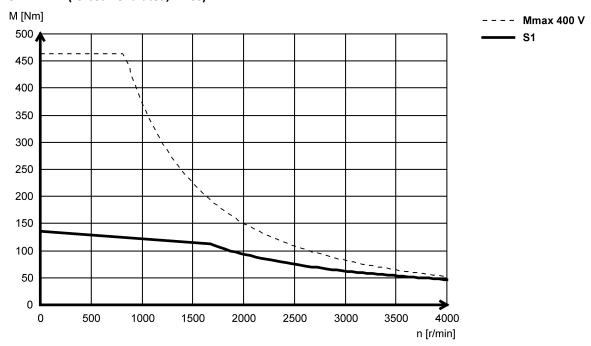


MCA22P08H (forced ventilated, IP23s)

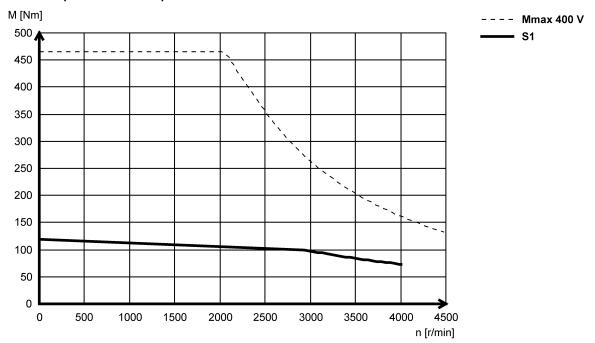

MCA22P14- (forced ventilated)


Torque characteristics

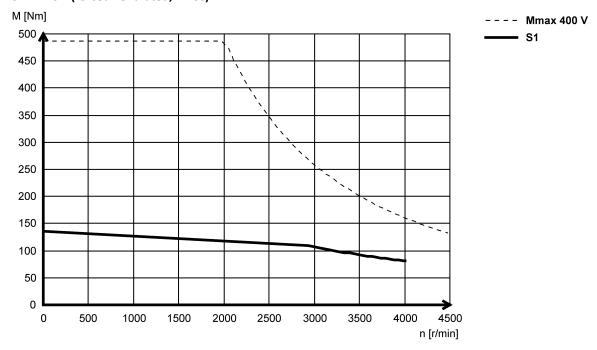
MCA22P14H (forced ventilated, IP23s)

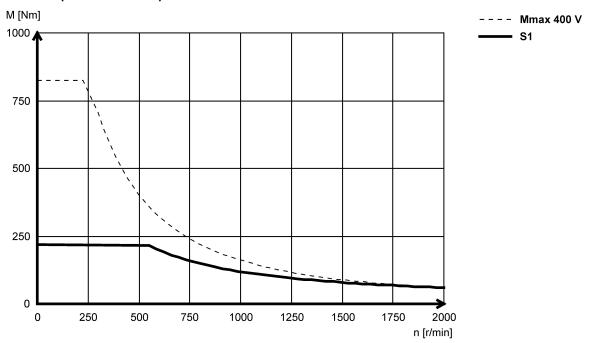


MCA22P17- (forced ventilated)

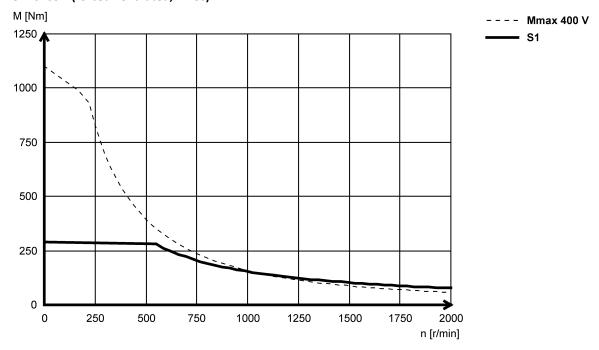


MCA22P17H (forced ventilated, IP23s)

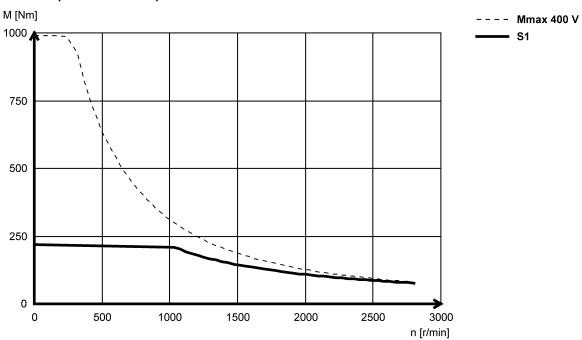

MCA22P29- (forced ventilated)


Torque characteristics

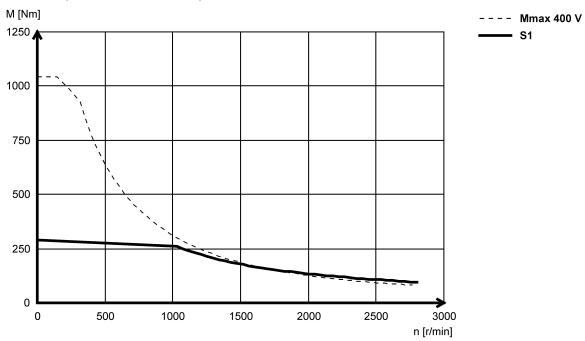
MCA22P29H (forced ventilated, IP23s)

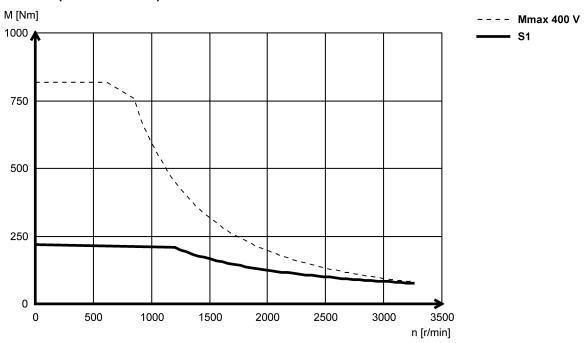


MCA26T05- (forced ventilated)

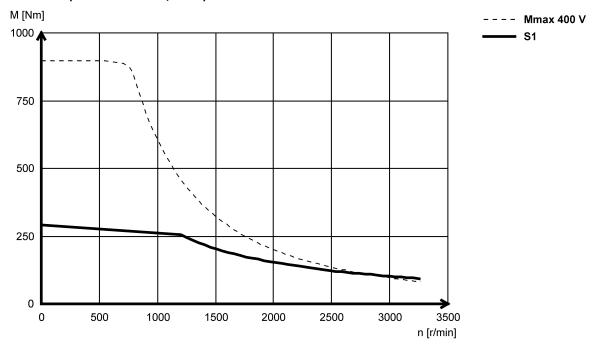


MCA26T05H (forced ventilated, IP23s)

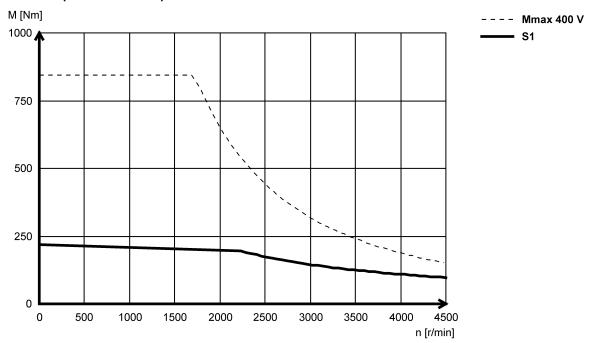

MCA26T10- (forced ventilated)


Torque characteristics

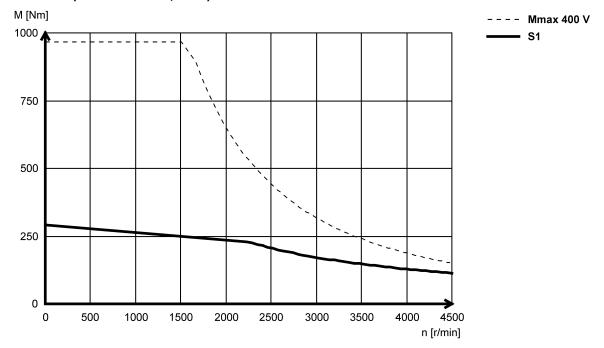
MCA26T10H (forced ventilated, IP23s)



MCA26T12- (forced ventilated)



MCA26T12H (forced ventilated, IP23s)



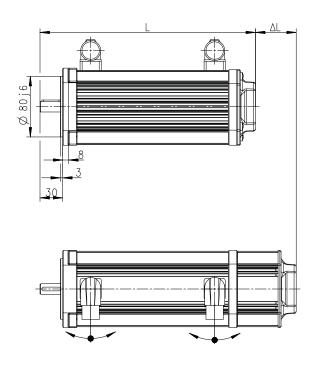
MCA26T22- (forced ventilated)

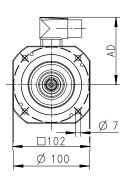
MCA26T22H (forced ventilated, IP23s)

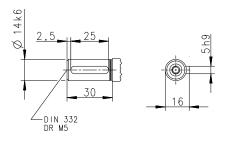
Dimensions

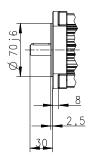
Notes on the basic dimensions

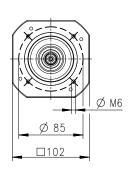
Table content Explanation

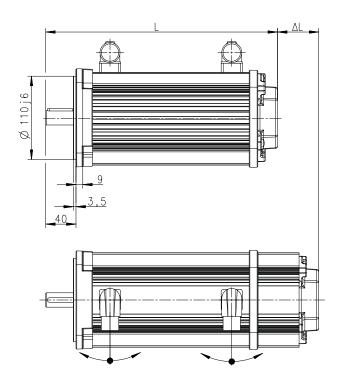

Total length without brake	L	otal length of the drive with resolver					
Total length with brake	L	otal length of the drive with resolver					
Motor/connection distance	AD	Distance from center of motor to end of connector/terminal box					

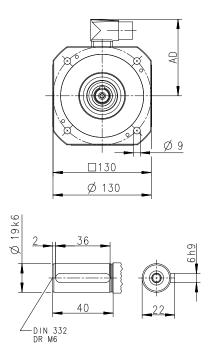


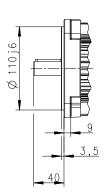

Basic dimensions

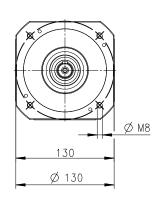

MCA10, self-ventilated


Design B5-FF100 / B14-FT85



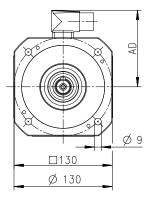

8800661-00

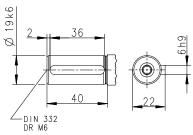

Motor			MCA 10I40-
Total length without brake	L	mm	292
Total length with brake	L	mm	317
Motor/connection distance	AD	mm	90

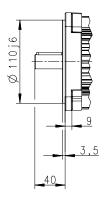


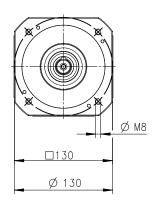
MCA13, self-ventilated Design B5-FF130 / B14-FT130

8800683-00

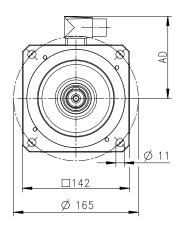

Motor			MCA 13I41-
Total length without brake	L	mm	311
Total length with brake	L	mm	346
Motor/connection distance	AD	mm	102

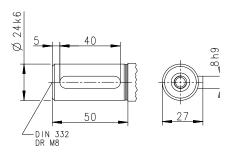


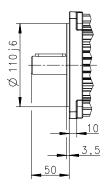

MCA13, forced ventilated

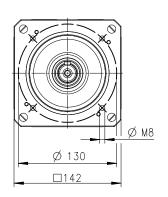

Design B5-FF130 / B14-FT130

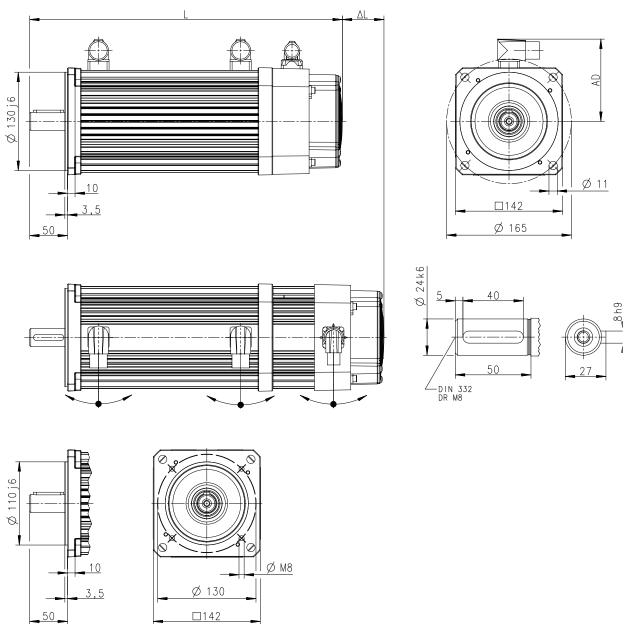
8800662-00


Motor			MCA 13134-
Total length without brake	L	mm	379
Total length with brake	L	mm	414
Motor/connection distance	AD	mm	102




MCA14, self-ventilated

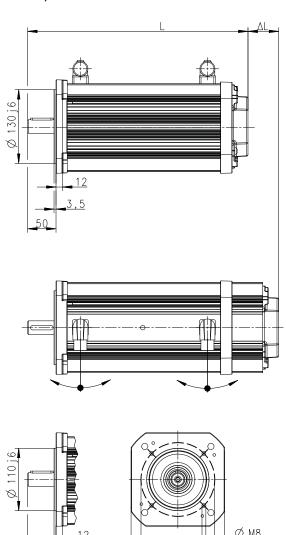

Type B5-FF165 / B14-FT130

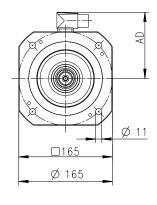

8800684-00

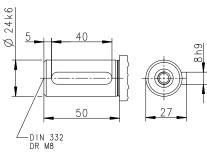
Motor			MCA 14L20-	MCA 14L41-
Total length without brake L mm		mm	352	
Total length with brake L mm		385		
Motor/connection distance	AD	mm	10	09

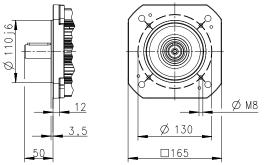
MCA14, forced ventilated

Type B5-FF165 / B14-FT130

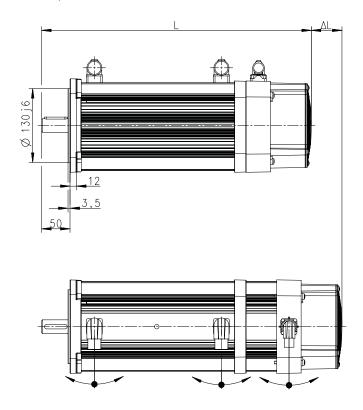

8800663-00

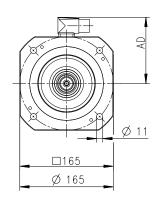

Motor			MCA 14L16-	MCA 14L35-
Total length without brake L mm			414	
Total length with brake	L	mm	44	17
Motor/connection distance	AD	mm	10	09

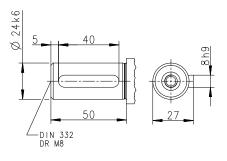

Δ L ▶ Additional lengths ☐ 91

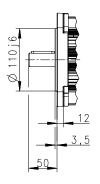


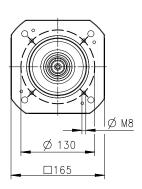
MCA17, self-ventilated Type B5-FF165 / B14-FT130

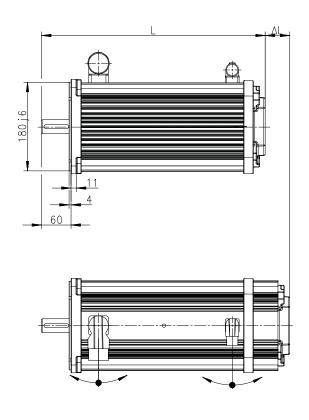

8800685-00

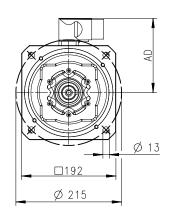

Motor			MCA 17N23-	MCA 17N41-
Total length without brake L mm		390		
Total length with brake	L	mm	42	25
Motor/connection distance	AD	mm	13	18

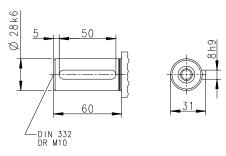


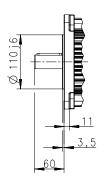

MCA17, forced ventilated

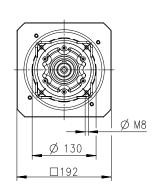

Type B5-FF165 / B14-FT130

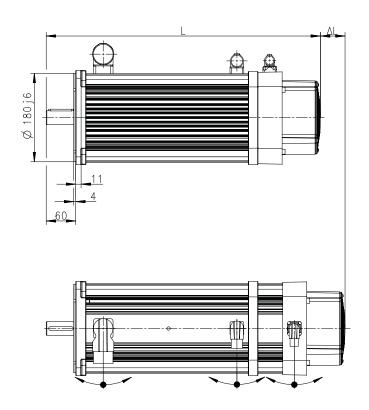


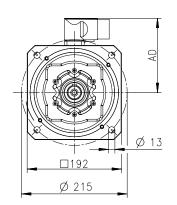

8800664-00

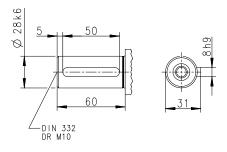

Motor			MCA 17N17-	MCA 17N35-
Total length without brake L mm		476		
Total length with brake	L	mm	51	.1
Motor/connection distance	AD	mm	11	1.8

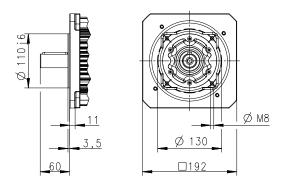



MCA19, self-ventilated Design B5-FF215 / B14-FT130

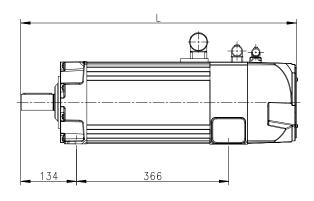

8800686-00

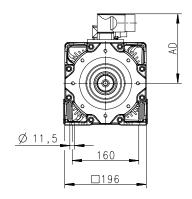

Motor			MCA 19S23-	MCA 19S42-
Total length without brake L mm		461		
Total length with brake	L	mm	49	99
Motor/connection distance	AD	mm	15	51

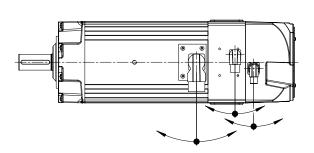


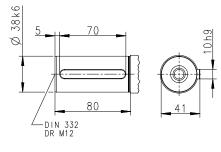

MCA19, forced ventilated

Design B5-FF215 / B14-FT130

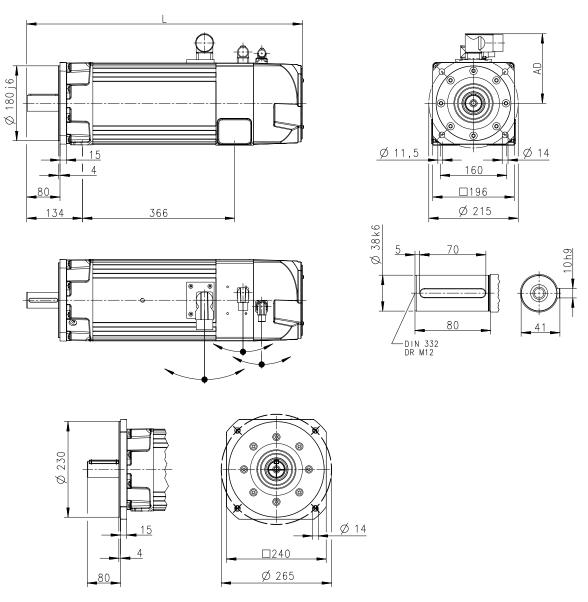

8800665-00


Motor			MCA 19S17-	MCA 19S35-
Total length without brake L mm		558		
Total length with brake	L	mm	59	96
Motor/connection distance	AD	mm	15	51




MCA20, forced ventilated

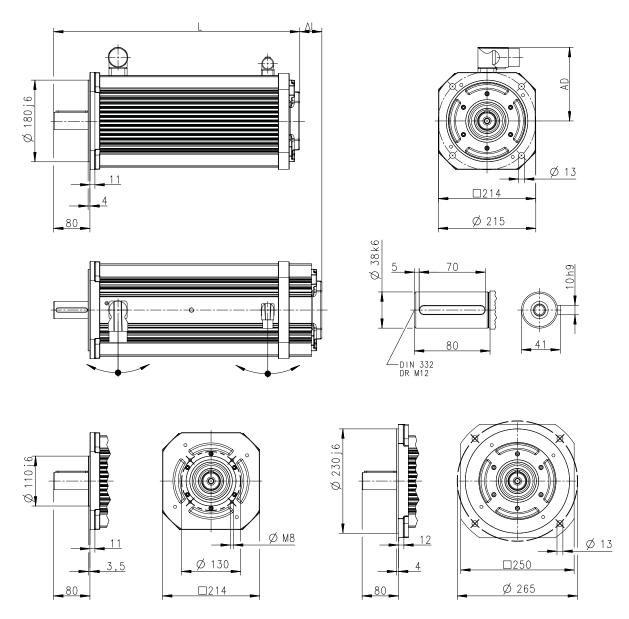
Design B3


8800687-00

Motor			MCA 20X14H	MCA 20X29H
Total length without brake L mm		666		
Motor/connection distance	AD	mm	17	71

MCA20, forced ventilated

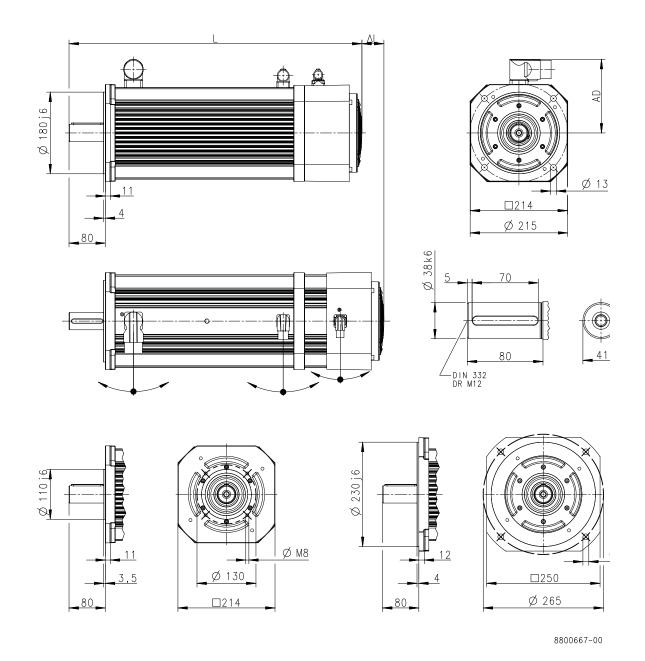
Design B35-FF215/265



8800666-00

Motor			MCA 20X14H	MCA 20X29H
Total length without brake L mm		666		
Motor/connection distance	AD	mm	17	71

MCA21, self-ventilated Design B5-FF215/265 / B14-FT130


8800688-00

Motor			MCA 21X25-	MCA 21X42-		
Total length without brake L mm			550			
Total length with brake	L	mm	592			
Motor/connection distance	AD	mm	162			

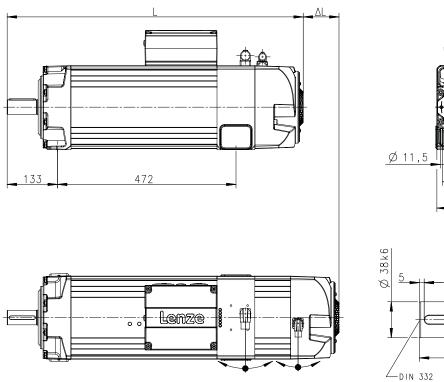
MCA21, forced ventilated

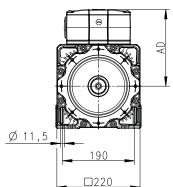
Design B5-FF215/265 / B14-FT130

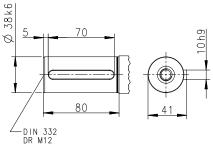
 Motor
 MCA 21X17 MCA 21X35

 Total length without brake
 L
 mm
 646

 Total length with brake
 L
 mm
 688

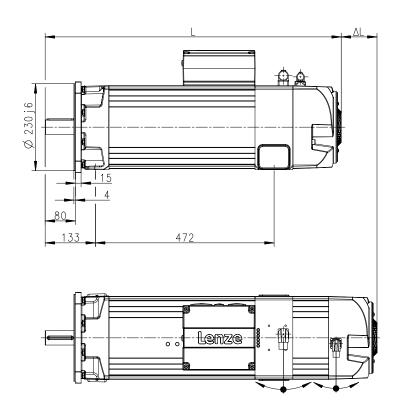

 Motor/connection distance
 AD
 mm
 162

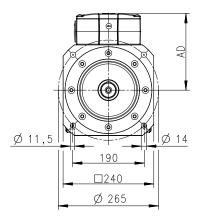

Δ L ▶ Additional lengths □ 91

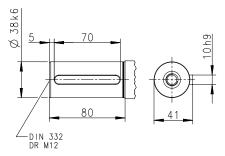


MCA22, forced ventilated

Design B3

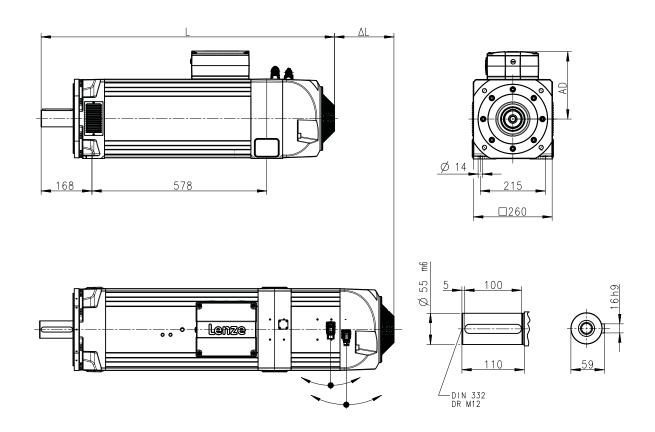

8800708-00


Motor	Motor			MCA 22P14- MCA 22P14H	MCA 22P17- MCA 22P17H	MCA 22P29- MCA 22P29H	
Total length without brake L mm			783				
Motor/connection distance AD mm			203				



MCA22, forced ventilated

Design B35-FF215/265


8800668-00

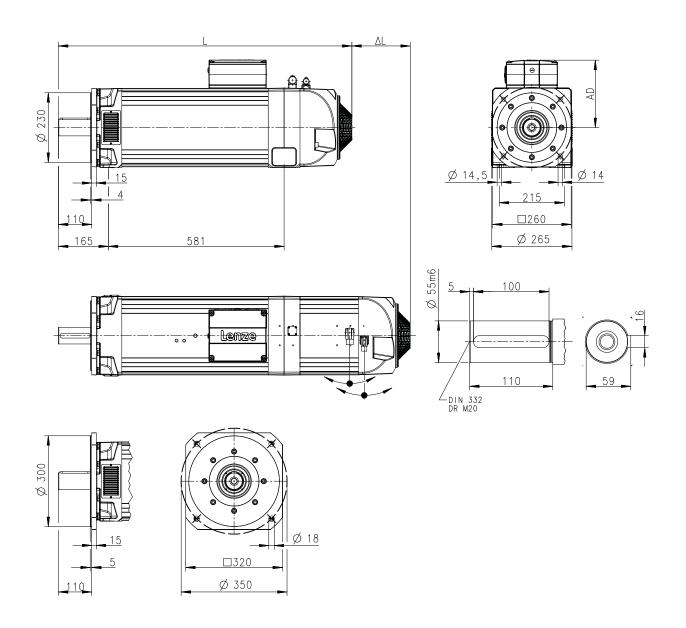
Motor			MCA 22P08- MCA 22P08H	MCA 22P14- MCA 22P14H	MCA 22P17- MCA 22P17H	MCA 22P29- MCA 22P29H	
Total length without brake L mm			783				
Motor/connection distance AD mm			203				

MCA26, forced ventilated

Design B3

8800710-02

Motor	Motor			MCA 26T10- MCA 26T10H	MCA 26T12- MCA 26T12H	MCA 26T22- MCA 26T22H	
Total length without brake L mm			970				
Motor/connection distance AD mm			256				


Technical data

Dimensions Basic dimensions

MCA26, forced ventilated

Design B35-FF265/350

8800709-00

Motor			MCA 26T05- MCA 26T05H	MCA 26T10- MCA 26T10H	MCA 26T12- MCA 26T12H	MCA 26T22- MCA 26T22H	
Total length without brake L mm			970				
Motor/connection distance AD mm				25	56		

Additional lengths

The motor code indicates the short designation of the brake and feedback. Detailed information can be found for

- ▶ Product codes 🕮 116
- ▶ Brakes 🕮 103
- ▶ Feedback 🕮 110

MCA10

Motor			MCA10I40-	
Cooling type			Natural	
R□0 Δ L mm		mm	0	
SR / T / E C	ΔL	mm	54	

MCA13

Motor			MCA13I34-	MCA13I41-	
Cooling type			Forced	Natural	
R□0 Δ L mm		mm	0	0	
SR 🗆 / T 🗆 🗆 / E 🗆 🗆	SR□/T□□/E□□ ΔL mm		54	54	

MCA14

Motor			MCA14L16-	MCA14L20-	MCA14L35-	MCA14L41-
Cooling type		Forced	Natural	Forced	Natural	
R□0	□0 Δ L mm		0	0	0	0
SR / T / E	ΔL mm		55	55	55	55

MCA17

Motor			MCA17N17-	MCA17N23-	MCA17N35-	MCA17N41-
Cooling type		Forced	Natural	Forced	Natural	
R□0 ΔL mm		0	0	0	0	
SR 🗆 / T 🗆 🗆 / E 🗆 🗆] / E□□		54	54	54	54

MCA19

Motor			MCA19S17-	MCA19S23-	MCA19S35-	MCA19S42-
Cooling type		Forced	Natural	Forced	Natural	
R□0	R□0 ΔL mm		0	0	0	0
SR 🗆 / T 🗆 🗆 / E 🗆 🗆	T□□/E□□ ΔL mm		50	50	50	50

MCA20

Motor			MCA2	0X14H	MCA2	0X29H
Cooling type			For	ced	Forced	
Fan filter	Fan filter			With	Without	With
Feedback (without brake B0)						
R□0	ΔL	mm	0	88	0	88
S	S□□/T□□/E□□ ΔL mm		0	88	0	88
Brake (F1/FG) and feedback	•					
R□0	ΔL	mm	87	176	87	176
S / T / E	ΔL	mm	131	219	131	219
Brake (F2/FH) and feedback						
R□0 Δ L mm			156	244	156	244
S	ΔL	mm	156	244	156	244

MCA21

Motor		tor		MCA21X25-	MCA21X35-	MCA21X42-
Cooling type		Forced	Natural	Forced	Natural	
R□0	Δ L mm		0	0	0	0
SR□ / T20 / E□□	ΔL	mm	49	49	49	49

Technical data

Weights Basic weights

MCA22

Motor		MCA22P08-		MCA22P14-		MCA2	2P17-	MCA22P29-		
			MCA2	2P08H	MCA2	2P14H	MCA2	2P17H	MCA2	2P29H
Cooling type			For	ced	For	ced	For	ced	For	ed
Fan filter			Without	With	Without	With	Without	With	Without	With
Feedback (without brake B0)										
R□0	ΔL	mm	0	82	0	82	0	82	0	82
S	ΔL	mm	0	82	0	82	0	82	0	82
Brake (F1/FG) and feedback										
R□0	ΔL	mm	95	176	95	176	95	176	95	176
S	ΔL	mm	133	215	133	215	133	215	133	215
Brake (F2/FH) and feedback										
R□0	ΔL	mm	165	247	165	247	165	247	165	247
S	ΔL	mm	165	247	165	247	165	247	165	247

MCA26

Motor		MCA2	MCA26T05-		MCA26T10-		MCA26T12-		MCA26T22-		
			MCA2	MCA26T05H		MCA26T10H		MCA26T12H		MCA26T22H	
Cooling type			For	ced	For	ced	For	ced	Fore	ed	
Fan filter			Without	With	Without	With	Without	With	Without	With	
Feedback (without brake B0)											
R□0	ΔL	mm	0	52	0	52	0	52	0	52	
S / T / E	ΔL	mm	0	52	0	52	0	52	0	52	
Brake (F1/FG) and feedback	•	•									
R□0	ΔL	mm	155	207	155	207	155	207	155	207	
S / T / E	ΔL	mm	193	245	193	245	193	245	193	245	
Brake (F2/FH) and feedback	•										
R□0	ΔL	mm	193	245	193	245	193	245	193	245	
S / T / E	ΔL	mm	193	245	193	245	193	245	193	245	

Weights

Basic weights

The basic weights are listed in the rated data.

▶ Rated data ☐ 32

Observe ▶ Additional weights ☐ 92!

Additional weights

Motors

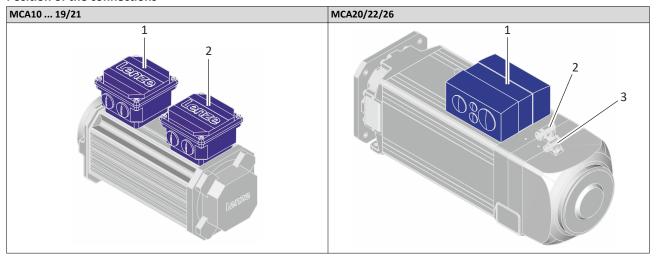
Motor			MCA10	MCA13	MCA14	MCA17	MCA19	MCA21
Permanent magnet	m	kg	0.9	0.8	1.5	1.5	2.7	5.0
holding brake								

Motor		MCA20		MCA22		MCA26		
Spring-applied holding b	rake							
Rated voltage	V _{rated}	V	24	230	24	230	24	230
Standard braking torque	m	kg	13.0	13.0	20.5	20.5	26.0	30.7
Increased braking torque	m	kg	15.4	15.4	26.0	26.0	-	-

Connection via terminal box

Product extensions

Motor connection


Connection via terminal box

If a motor is to be connected to an existing cable or plug connectors are not to be used for other reasons, the connection can also be made via a terminal box.

With MCA20/22/26, the connection for feedback, temperature monitoring, and a separate fan is generally via an ICN connector.

The terminals are designed as tension spring terminals to ensure here the long-term vibration resistance of the cable contacts with adequate contact pressure required.

Position of the connections

Position	Meaning	Position	Meaning
1	Power connection	1	Power connection
	Brake connection		Brake connection
	PE connection		PE connection
2	Feedback connection	2	Feedback connection
	Connection of temperature monitoring		Connection of temperature monitoring
	Blower connection		
		3	Blower connection

Cable glands MCA10 ... 19/21

The openings for the cable glands are closed with plugs and arranged on one side. If required, the terminal box can be rotated step by step by 90 $^{\circ}$ after loosening the screws in the terminal box.

Motor		MCA10	MCA14	MCA19	
		MCA13	MCA17	MCA21	
Screwed connections		2x M2	1x M32 x 1.5 1x M25 x 1.5		
cable cross-section	mm ²	0.08	2.5	0.2 10	
Stripping length	mm	10 11			
Terminal design			Spring-loaded terminal		

Product extensions

Motor connection Connection via terminal box

MCA20/22/26 cable glands

The cut-outs for the cable glands are closed with sealing plugs.

The cable glands are arranged on both sides with the MCA20 variant.

The cable glands are arranged on one side with the MCA22 and MCA26 variants. If required, the terminal box can be rotated by 180 $^{\circ}$ after loosening the screws in the terminal box.

Motor		MCA20	MCA22	MCA26
Screwed connections		2x M20 x 1.5	1x M40 x 1.5	1x M50 x 1.5
		2x M25 x 1.5	1x M50 x 1.5	1x M63 x 1.5
		2x M32 x 1.5	1x M20 x 1.5	1x M20 x 1.5
			1x M16 x 1.5	1x M16 x 1.5
Cable cross-section	mm ²	2.5 16	10 35	-
Terminal design		Spring-loaded terminal	Screw terminal	Threaded bolt
Stripping length	mm	18 20	18	-
Threaded bolt		-	-	M12
Tightening torque	Nm	-	3.2	15.5

Terminal box, power					
Contact	Name	Meaning			
U1	L1				
V1	L2	Motor winding phase			
W1	L3				
PE	PE	PE conductor			

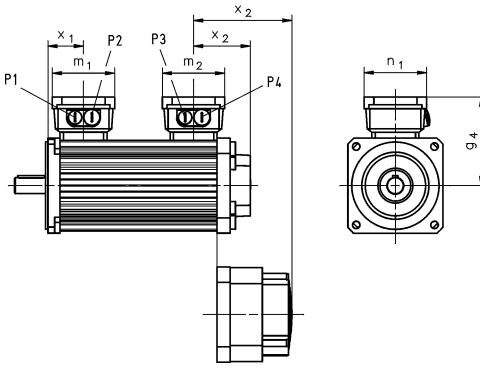
Terminal box, DC brake					
Contact	Name	Meaning			
BD1	+	Brake +			
BD2	-	Brake -			

Terminal box, AC brake						
Contact	Name	Meaning				
~	L1 Mains					
	N	Niditis				
+	+	Holding brake (factory-wired)				
-	-	noiding brake (ractory-wired)				
Schalter		Switching contact - DC switching				

Terminal box, resolver	Ferminal box, resolver						
Contact	Name	Meaning					
B1	+Ref	Transformer windings (reference windings)					
B2	-Ref	Transformer windings (reference windings)					
В3	+VCC ETS	Supply: Electronic nameplate (only for variant with electronic nameplate ETS)					
B4	+COS	Stator windings cosine					
B5	-COS	Stator windings cosme					
B6	+SIN	Stator windings sine					
B7	-SIN	Stator windings sine					
B8		Not assigned					

Motor connection Connection via terminal box

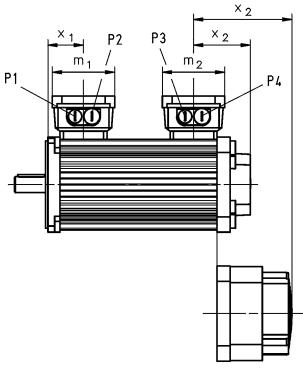
Ferminal box, SinCos absolute value encoder with Hiperface					
Contact	Name	Meaning			
B1	+ UB	Supply +			
B2	GND	Mass			
В3	А	Track A / + COS			
B4	A ⁻	Track A inverse /-COS			
B5	В	Track B / + SIN			
В6	B ⁻	Track B inverse/-SIN			
В7	Z	Zero track / + RS485			
B8	Z ⁻	Zero track inverse /-RS485			
B10		Incremental encoder shield			

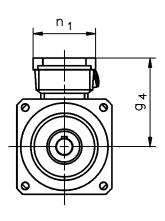

erminal box, SinCos absolute value encoder with EnDat				
Contact	Name	Meaning		
B1	+ UB	Supply +		
B2	GND	Mass		
В3	A	Track A / + COS		
B4	A-	Track A inverse /-COS		
B5	В	Track B / + SIN		
B6	B-	Track B inverse/-SIN		
B7	Daten	EnDat interface data		
B8	Daten-	Data inverse EnDat interface		
B20	Takt	EnDat interface cycle		
B21	Takt-	Inverse EnDat interface cycle		
B22	Up Sensor	Up Sensor		
B23	0 V Sensor	0 V sensor		
B24	Schirm	Encoder housing shield		
B25		Not assigned		

Terminal box, temperature monitoring				
Contact	Name Meaning			
R1	+	Temperature sensor +		
R2	-	Temperature sensor -		

Terminal box, 1-phase separate fan				
Contact	Name	Meaning		
PE	PE	PE conductor		
U1	L1	Mains		
U2	N	ividitis		

Terminal box dimensions MCA10 ... 17




Motor						MCA			
			10140-	13 34-	13141-	14L16-	14L20-	17N17-	17N23-
						14L35-	14L41-	17N35-	17N41-
Cooling type			Natural	Forced	Natural	Forced	Natural	Forced	Natural
Motor/connection distance	g ₄	mm	113	1	25	13	33	14	11
Power connection, brake		'							
Screwed connections	P ₁	mm				M20x1.5			
	P ₂	mm				M20x1.5			
Terminal box	m ₁	mm	93						
	n ₁	mm	93						
	x ₁		54 57 53 55				5		
Feedback connection, temperature monit	oring	1							
Screwed connections	P ₃	mm				M20x1.5			
	P ₄	mm				M20x1.5			
Terminal box	m ₂	mm	93						
n_1		mm	93						
Resolver	x ₂	mm	78	145	77	147	85	171	85
Absolute value encoder/incremental encoder	x ₂	mm	132	199	131	202	140	225	139

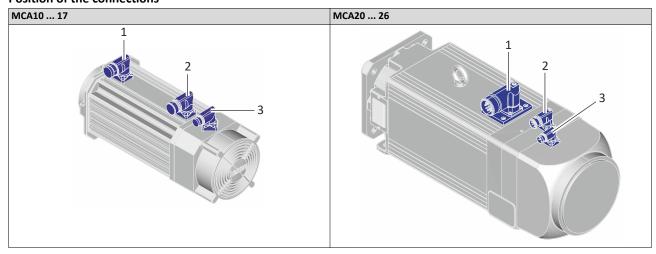
Terminal box dimensions MCA19 ... 26

Motor			MCA						
			19517-	19523-	20X14H	21X17-	21X25-	MCA22P	MCA26T
			19S35-	19542-	20X29H	21X35-	21X42-		
Cooling type			Forced	Natural	Forced	Forced	Natural	Forced	Forced
Motor/connection distance 11	g ₄	mm	158		171	169		203	256
Power connection, brake		'							•
Screwed connections	P ₁	mm	M25	5x1.5	M32x1.5	M25x1.5		M50x1.5	M63x1.5
					M25x1.5			M40x1.5	M50x1.5
	P ₂	mm	M32	2x1.5	M20x1.5	M32x1.5		M20x1.5	M20x1.5
								M16x1.5	M16x1.5
Terminal box	m ₁	mm	115		154	1	15	190	234
	n ₁	mm	1	15	128	1	15	171	212
	x ₁		64		299	7	0	380	465
Feedback connection, temperature moni	toring								
Screwed connections	P ₃	mm	M20x1.5		-	M20x1.5		-	
	P ₄	mm	M20	0x1.5	-	M20)x1.5		-
Terminal box	m ₂	mm	1	15	-	115		-	
	n ₁	mm 115		15	-	115			-
Resolver	x ₂	mm	190	93	-	193	97		-
Absolute value encoder/incremental encoder	x ₂	mm	240	143	-	243	147		-

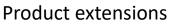
Product extensions

Motor connection Connection via ICN connector

Connection via ICN connector


The electrical connection to the servo motors as a standard is established via ICN connectors.

The connectors can be rotated by 270 ° and are provided with a bayonet catch. Since the catch of the connector is also compatible with conventional box nuts, existing mating connectors with a screw plug can continue to be used without any problems.



In order to provide for a quick and error-free connection of Lenze motors to Lenze inverters, we recommend using prefabricated Lenze system cables.

Position of the connections

Position	Meaning	Position	Meaning
1	Power connection	1	Only with MCA20:
	Brake connection		Power connection
	PE connection		Brake connection
			PE connection
2	Feedback connection	2	Feedback connection
	Connection of temperature monitoring		Connection of temperature monitoring
3	Blower connection	3	Blower connection

Motor connection Connection via ICN connector

Power and brake connection

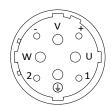
Valid for MCA10 ... 17

ICN-M23 connector assignment

6-pole

ICN M23 6-pole					
Contact	Name	Meaning			
PE	PE	PE conductor			
1	BD1	Holding brake DC +/AC			
2	BD2	Holding brake DC -/AC			
4	U	Power phase U			
5	V	Power phase V			
6	W	Power phase W			

Product extensions

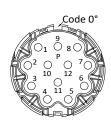

Motor connection Connection via ICN connector

Valid for MCA19 ... 21

ICN-M40 connector assignment

8-pole

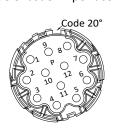
CN M40 8-pole				
Contact	Name	Meaning		
+	BD1	Holding brake +		
-	BD2	Holding brake -		
PE	PE	PE conductor		
U	U	Power phase U		
V	V	Power phase V		
W	W	Power phase W		
1		Not assigned		
2		Not assigned		



Motor connection Connection via ICN connector

Feedback and temperature monitoring connection

ICN-M23 connector assignment

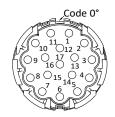

Resolver

ICN M23 for resolvers	CN M23 for resolvers					
Contact	Name	Meaning				
1	+Ref	Transformer windings				
2	-Ref	Transformer windings				
3	+VCC ETS	Supply: Electronic nameplate (Only for motors and inverters that support this function)				
4	+COS	Stator windings cosine				
5	-cos	Stator windings cosine				
6	+SIN	Stator windings sine				
7	-SIN	Stator windings sine				
8		Not assigned				
9		Not assigned				
10	Schirm	Encoder housing shield				
11	+	Temperature monitoring: PT1000				
12	-	Temperature monitoring: PT1000				

ICN-M23 connector assignment

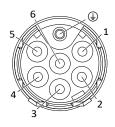
Incremental and SinCos absolute value encoder Hiperface©

CN M23 for incremental and SinCos absolute value encoder Hiperface				
Contact	Name	Meaning		
1	В	Track B / + SIN		
2	A ⁻	Track A inverse /-COS		
3	A	Track A / + COS		
4	+UB	Supply +		
5	GND	Mass		
6	Z ⁻	Zero track inverse /-RS485		
7	Z	Zero track / + RS485		
8		Not assigned		
9	B ⁻	Track B inverse/-SIN		
10	Schirm	Encoder housing shield		
11	+	Temperature monitoring: PT1000		
12	-	Temperature monitoring: PT1000		


Product extensions

Motor connection Connection via ICN connector

ICN-M23 connector assignment


SinCos absolute value encoder with EnDat interface

CN M23 SinCos absolute value encoder with EnDat				
Contact	Name	Meaning		
1	UP Sensor	Up Sensor		
2		Not assigned		
3		Not assigned		
4	0 V Sensor	0 V sensor		
5	+	PT1000/KTY temperature sensor		
6	-	PT1000/KTY temperature sensor		
7	+UB	Supply +		
8	Takt	EnDat interface cycle		
9	Takt-	Inverse EnDat interface cycle		
10	GND	Mass		
11	Schirm	Encoder housing shield		
12	В	Track B		
13	B-	Track B inverse/-SIN		
14	Daten	EnDat interface data		
15	А	Track A		
16	A-	Track A inverse /-COS		
17	Daten-	Data inverse EnDat interface		

Blower

Pin assignment ICN-M17

ICN M17 for blowers 1-ph				
Contact	Name	Meaning		
PE	PE	PE conductor		
1	U1	Fan		
2	U2	Fan		
3		Not assigned		
4		Not assigned		
5		Not assigned		
6		Not assigned		

Brakes

Optionally, the MCA10 ... 19 and MCA21 motors can be ordered with a permanent magnet brake as the holding brake.

Spring-applied brakes are available as holding brakes for the MCA20, 22 and 26 motors.

∴ CAUTION!

They may not be used as safety elements (particularly with hoist axes) without additional measures being implemented.

The brakes used are not fail-safe brakes in the sense that prospective disruptive factors, e.g. oil ingress, can lead to a reduction in torque!

- ► The brakes must only be used as holding brakes for holding the axes at a standstill or in the deenergised state.
- ► The brake must not be used as a service brake.

∴ CAUTION!

If no suitable voltage (incorrect value, incorrect polarity) is applied to the brake, the brake will be applied and can be overheated and destroyed by the motor continuing to rotate.

Motor supply cables

If long motor supply cables are used, pay attention to the ohmic voltage drop along the cable and compensate for it with a higher voltage at the input end of the cable.

The following applies to Lenze system cables:

[V]	U	٧	Resulting supply voltage
$U[V] = U_B[V] + 0.08 \frac{[V]}{[A] \times [m]} \times I_{Lg}[m] \times I_B[A]$	U _B	٧	Rated voltage of the brake
	I _{Lg}	m	Cable length
	I _B	Α	Rated current of the brake

NOTICE

- ► The brakes become active when the supply voltage has been switched off (closed-circuit principle).
- ► When using the brakes purely as holding brakes, virtually no wear occurs on the friction surfaces.
- ► The friction surfaces must always be free from oil and grease because even small amounts of grease or oil will considerably reduce the braking torque.

NOTICE

In case of these permanent magnet brakes, the rated torque applies solely as holding torque at standstill.

- ► Emergency stops at higher speeds are possible but high switching energy increases wear on the friction surfaces and the hub.
- ▶ During braking from full motor speed, e.g. in the event of emergency stops, the braking torque is significantly reduced.

NOTICE

In case of travel axes, the compliance of the permissible ratio of mass inertia load/brake motor (J_L/J_{MB}) ensures that the permissible maximum switching energy of the brake will not be exceeded and at least the values given for the emergency stop functions from the given speed (see rated data) are applied.

For hoist axes, the load torque resulting from the weight acts additionally. In this case, the specifications for (J_L/J_{MB}) do not apply.

To simplify matters, the friction energy per switching cycle can be calculated using the formula below and must not exceed the limit value for emergency stops, which depends on the switching rate:

$$Q = \frac{1}{2} \times J_{ges} \times \left(2\pi \times \frac{\Delta n}{60}\right)^2 \times \frac{M_N}{M_N - M_L}$$

Q	J	Friction energy
J _{total}	kgm ²	Total mass inertia (motor + load)
Δn	rpm	Differential speed
M_N	Nm	Rated torque of the brake
M_L	nM	Load torque

The shortest operating times of the brakes are achieved by DC switching of the voltage and an external suppressor circuit (varistor or spark suppressor).

Without suppressor circuit, the operating times may increase. A varistor/ spark suppressor limits the breaking voltage peaks. It must be ensured that the power limit of the suppressor circuit is not exceeded. This limit depends on the brake current, brake voltage, disengagement time and the switching operations per time unit.

Furthermore the suppressor circuit is necessary for interference suppression and for increasing the service life of the relay contacts (external, is not integrated into the motor).

It is not possible to readjust the brake.

Permanent magnet brakes

Rated data

Engagement and disengagement times apply to rated voltage (\pm 0 %) and suppressor circuit of the brakes with a varistor with DC switching. Without a suppressor circuit, the times may be longer.

The currents are the maximum values when the brake is cold (value used for dimensioning the current supply). The values for a motor at operating temperature are considerably lower.

With 24 V DC brake: smoothed DC voltage, ripple \leq 1 %.

With 205 V DC brake: connection to 230 V AC via external rectifier (no cURus possible).

Maximum switching energy per emergency stop with n= 3000 rpm for at least 2000 emergency stops.

Supply voltage DC 24 V

Motor			MCA10I	MCA13I	MCA14L	MCA17N	MCA19S	MCA21X
Supply voltage range	V _{in}	V	21.84 25.2					
Supply voltage	V _{rated}	V			2	24		
Bemessungsdrehmoment								
At 20 °C	M _{rated}	Nm	3.30	12	26	24	46	88
At 120 °C	M _{rated}	Nm	2.50	11	2	22	40	80
Rated current	I _{rated}	А	0.50	0.67	0.	75	0.81	1.46
Engagement time t1	t ₁	ms	10	20	16 25		23	
Disengagement time t2	t ₂	ms	20	29	70	50	73	140
Friction energy	Q _E	kJ	0.35	0.40	0.7	1.2	1.90	2.80
Weight	m	kg	0.3	0.80	1.1	1.50	1.9	3.9
Massenträgheitsmoment					-		-	
Brake	J	kgcm²	0.38	1.06	3.	60	9.50	31.8
Brake motor	J _{MB}	kgcm²	2.78	9.36	22.8	39.6	81.5	212
Load/brake motor ratio	J _L /J _{MB}		24.5	7.7	5.2	5.1	3.7	1.7
Motor code			P1	P1	P4	P1	P1	P1

Product extensions
Brakes
Permanent magnet brakes

Supply voltage DC 205 V

Motor			MCA10I	MCA13I	MCA14L	MCA17N	MCA19S	MCA21X
Supply voltage range	V _{in}	V	186.55 215.25					
Supply voltage	V _{rated}	V			2	05		
Bemessungsdrehmoment								
At 20 °C	M _{rated}	Nm	3.30	12	26	24	46	88
At 120 °C	M _{rated}	Nm	2.50	11	2	22	40	80
Rated current	I _{rated}	А	0.059	0.08	0.0	088	0.11	0.18
Engagement time t1	t ₁	ms	10	20	16 25		23	
Disengagement time t2	t ₂	ms	20	29	70	50	73	140
Friction energy	Q _E	kJ	0.35	0.40	0.7	1.2	1.90	2.80
Weight	m	kg	0.3	0.80	1.1	1.50	1.9	3.9
Massenträgheitsmoment								•
Brake	J	kgcm²	0.38	1.06	3.	60	9.50	31.8
Brake motor	J _{MB}	kgcm²	2.78	9.36	22.8	39.6	81.5	212
Load/brake motor ratio	J _L /J _{MB}		24.5	7.7	5.2	5.1	3.7	1.7
Motor code			P8	P5	P8	P5	P5	P5

Spring-applied brakes

Spring-applied brakes

Rated data

Engagement and disengagement times apply to rated voltage (\pm 0 %) and suppressor circuit of the brakes with a varistor with DC switching. Without a suppressor circuit, the times may be longer.

The currents are the maximum values when the brake is cold (value used for dimensioning the current supply). The values for a motor at operating temperature are considerably lower.

With 24 V DC brake: smoothed DC voltage, ripple \leq 1 %.

With 230 V AC brake: connection to an integrated rectifier (no cURus possible).

Maximum switching energy for each emergency stop with n= 3000 rpm for at least 300 , and a maximum of 4 emergency stops per hour.

Standard braking torque

Supply voltage DC 24 V

Motor			MCA20X	MCA22P	MCA26T	
Supply voltage range	V _{in}	V	21.6 26.4			
Supply voltage	V _{rated}	V		24		
Bemessungsdrehmoment						
At 20 °C	M _{rated}	Nm	90	150	300	
At 120 °C	M _{rated}	Nm	80	130	260	
Rated current	I _{rated}	А	3.13	3	.75	
Engagement time t1	t ₁	ms	70	50	175	
Disengagement time t2	t ₂	ms	220	260	320	
Friction energy	Q _E	kJ	18	23	51	
Weight	m	kg	13	20.5	30.7	
Massenträgheitsmoment						
Brake	J	kgcm²	6.88	18.1	70.4	
Brake motor	J _{MB}	kgcm²	177	505	1405	
Load/brake motor ratio	J _L /J _{MB}		19.6	8.2	12.7	
Motor code				F1		

Product extensions

Brakes Spring-applied brakes

Standard braking torque

Supply voltage AC 230 V

Motor			MCA20X	MCA22P	MCA26T	
Supply voltage range	V _{in}	V	207 253			
Supply voltage	V _{rated}	V		230		
Bemessungsdrehmoment						
At 20 °C	M _{rated}	Nm	90	150	300	
At 120 °C	M _{rated}	Nm	80	130	260	
Rated current	I _{rated}	А	0.37	0.44	0.37	
Engagement time t1	t ₁	ms	70	130	175	
Disengagement time t2	t ₂	ms	220	260	360	
Friction energy	Q _E	kJ	18	23	51	
Weight	m	kg	13	20.5	30.7	
Massenträgheitsmoment						
Brake	J	kgcm²	6.88	18.1	70.4	
Brake motor	J _{MB}	kgcm²	177	505	1405	
Load/brake motor ratio	J _L /J _{MB}		19.6	8.2	12.7	
Motor code			FG			

Increased braking torque

Supply voltage DC 24 V

Motor			MCA20X	MCA22P		
Supply voltage range	V _{in}	V	21.6	. 26.4		
Supply voltage	V _{rated}	٧	24			
Bemessungsdrehmoment						
At 20 °C	M _{rated}	Nm	150	300		
At 120 °C	M _{rated}	Nm	130	260		
Rated current	I _{rated}	А	2.58	3.75		
Engagement time t1	t ₁	ms	70	175		
Disengagement time t2	t ₂	ms	240	320		
Friction energy	Q _E	kJ	31	39		
Weight	m	kg	15.4	26		
Massenträgheitsmoment						
Brake	J	kgcm²	14.1	36.3		
Brake motor	J _{MB}	kgcm²	189	523		
Load/brake motor ratio	J _L /J _{MB}		33	14.1		
Motor code			F:	2		

Brakes Spring-applied brakes

Increased braking torque

Supply voltage AC 230 V

Motor			MCA20X	MCA22P			
Supply voltage range	V _{in}	V	207 253				
Supply voltage	V _{rated}	V	2:	30			
Bemessungsdrehmoment							
At 20 °C	M _{rated}	Nm	150	300			
At 120 °C	M _{rated}	Nm	130	260			
Rated current	I _{rated}	А	0.3	0.44			
Engagement time t1	t ₁	ms	70	130			
Disengagement time t2	t ₂	ms	240	310			
Friction energy	Q _E	kJ	31	39			
Weight	m	kg	15.4	26			
Massenträgheitsmoment							
Brake	J	kgcm²	14.1	36.3			
Brake motor	J _{MB}	kgcm²	189	523			
Load/brake motor ratio	J _L /J _{MB}		33	14.1			
Motor code			F	н			

Feedback

For speed control with a servo inverter, the servo motor can be equipped with the following feedback systems:

Inverter	Feedback without functional safety								
	Resolver	Absolute value encoder	Incremental encoder						
i950 servo inverter	RS0	AM1024-8V-H	-						
		AS1024-8V-H							
i700 servo inverter	RS0	AM1024-8V-H	-						
		AS1024-8V-H							
8400 TopLine inverter drives	RS0	AM1024-8V-H	IG2048-5V-S						
		AS1024-8V-H	IG2048-5V-T						
			IG4096-5V-T						
9400 HighLine servo drives	RS0	AM32-5V-E	IG2048-5V-S						
		AM1024-8V-H	IG2048-5V-T						
		AM2048-5V-E	IG4096-5V-T						
		AS1024-8V-H							
		AS2048-5V-E							

Inverter	Feedback with functional safety								
	Resolver	Absolute value encoder	Incremental encoder						
i950 servo inverter	RV03	-	-						
9400 HighLine servo drives	RV03	-	IG1024-5V-V3						

Feedbacks in the environment of functional safety

Motors can perform speed-dependent safety functions for safe speed and/or safe relative position monitoring in a drive system by Lenze inverters or Controllers. In case of inverters, these functions are implemented by integrable safety modules and in case of Controllers by the additionally required Safety Controller.

When planning systems/installations of this kind, always observe the following:

- When using just one single feedback system in the environment of these safety
 applications, the applicable safety engineering standard IEC 61800-5-2 (adjustable speed
 electrical power drive systems Part: 5-2: Safety requirements Functional) stipulates
 special requirements for the connection between feedback system and motor shaft.
- This is due to the fact that two-channel safety systems at this point in the mechanical system are actually designed as single-channel systems. If this mechanical connection is designed with considerable overdimensioning, the standard permits exclusion of the fault "encoder-shaft breakage" or "encoder-shaft slip". As such, the permissible angular acceleration limit values must not be exceeded for the individual drive solutions.

You can find the limit values in the corresponding feedback data of the individual motor ranges.

Speed-dependent safety functions

Examples of speed-dependent safety functions:

- Safe stop 1 (SS1)
- Safe operational stop (SOS)
- Safely limited speed (SLS)
- Safe maximum speed (SMS)
- Safe direction (SDI)
- Operation mode selector (OMS) with confirmation (ES)
- Safe speed monitor (SSM)
- Safely limited increment (SLI)

Resolver

The stator-supplied, 2-pole resolver with two stator windings shifted by 90 degrees and a rotor winding with a transformer winding can record both the speed and the rotor position, just like a single-turn absolute value encoder. The rotor position can be determined within one mechanical motor revolution after a voltage failure.

Feedback type			Reso	olver
Feedback			RS0	RV03
Speed-dependent safety functions			No	Yes
Design			Mou	nting
Resolution - angle		'	0.8	0.8
Min. accuracy			-10	-10
Max. accuracy		'	10	10
Absolute positioning			1 revolution	1 revolution
Max. speed	n _{max}	rpm	8000	8000
Max. DC input voltage	V _{in,max}	V	10	10
Max. input frequency	f _{in,max}	kHz	4	4
Ratio stator/rotor			0.3	0.3
Min ratio tolerance		%	-5	-5
Max ratio tolerance		%	5	5
Rotor impedance	Z _{ro}	Ω	51+j90	51+j90
Stator impedance	Z _{so}	Ω	102+j150	102+j150
Impedance	Z _{rs}	Ω	44+j76	44+j76
Min. insulation resistance at DC 500 V	R _{min}	ΜΩ	10	10
Number of pole pairs			1	1
Max. angle error Min		'	-10	-10
Max. angle error Max		1	10	10

Speed-dependent safety functions

Feedback			RV03
Motor code			RV03
Max. permissible angular acceleration	α	rad/s ²	22000
Functional safety			
IEC 61508			SIL3
EN 13849-1			Up to Performance Level e

Product extensions

Feedback Incremental encoder

Incremental encoder

Incremental encoders can be used for speed measurement. Homing is required in order to enable positioning later.

Feedback type			SinCos-In	kremental	TTL-Inkremental			
Feedback			IG1024-5V-V3	IG2048-5V-S	IG2048-5V-T	IG4096-5V-T		
Speed-dependent safety functions			Yes	No	No	No		
Design				Mou	nting			
Pulses			1024	2048	2048	4096		
Output signals			SinCos 1 Vss	SinCos 1 Vss	TTL	TTL		
Interfaces			SinCos		A, B; N; Ai, Bi; Ni			
Absolute revolution			0	0	0	0		
Min. accuracy		1	-0.8	-0.8	-2	-2		
Max. accuracy		'	0.8	0.8	2	2		
Min. DC input voltage	V _{in,min}	V	4.75	4.5	4.75	4.75		
Max. DC input voltage	V _{in,max}	V	5.25	5.5	5.25	5.25		
Max. current consumption	I _{max}	Α	0.07	0.1	0.15	0.15		
Limit frequency	f _{max}	kHz	200	180	300	300		

Speed-dependent safety functions

Feedback type	SinCos incremental
Feedback	IG1024-5V-V3
Motor code	S1S
Functional safety	
IEC 61508	SIL3
EN 13849-1	Up to Performance Level e

Absolute value encoder

Absolute value encoder

Absolute value encoders can detect the speed, the rotor position, and the machine position with a very high resolution. They are used for the positioning of dynamic applications and do not require homing.

Feedback type			SinCos absolute value encoder								
Feedback			AM32-5V-E	AM1024-8V-H	AM2048-5V-E	AS1024-8V-H	AS2048-5V-E				
Speed-dependent safety functions			No	No	No	No	No				
Design			Mounting	Mounting	Mounting	Mounting	Mounting				
Encoder type			Multi-turn	Multi-turn	Multi-turn	Single-turn	Single-turn				
Resolution		bit	-	-	-	-	-				
Pulses			32	1024	2048	1024	2048				
Output signals			SinCos 1 Vss	SinCos 1 Vss	SinCos 1 Vss	SinCos 1 Vss	SinCos 1 Vss				
Interfaces			EnDat	Hiperface	EnDat	Hiperface	EnDat				
Absolute revolution			4096	4096	4096	1	1				
Resolution - angle			0.4	0.4	0.4	0.4	0.4				
Min. accuracy		1	-5	-0.8	-0.6	-0.8	-0.6				
Max. accuracy		1	5	0.8	0.6	0.8	0.6				
Fehlergrenze Positionswert				1							
System accuracy			-	-	-	-	-				
Integral nonlinearity			-	-	-	-	-				
Min. DC input voltage	V _{in,min}	V	4.75	7	4.75	7	4.75				
Max. DC input voltage	V _{in,max}	V	5.25	12	5.25	12	5.25				
Max. current consumption	I _{max}	А	0.17	0.08	0.25	0.08	0.15				
Limit frequency	f _{max}	kHz	600	200	200	200	200				

Product extensions

Blower

Blower

The forced ventilation motors are cooled as a standard by means of a separate axial fan.

The separate fans for the MCA20, MCA22 and MCA26 motors are optionally available with a dust filter.

Rated data 50 Hz

Motor series			MCA								
Size		13	14	17	19	20	20 21 22			26	
Degree of protection				IP	54		IP23	IP	54	IP23	IP54
Number of phases			1	1	1	1	1	1	1	1	1
Rated voltage	$V_{\rm rated}$	V	230	230	230	230	230	230	230	230	230
Rated power	P _{rated}	kW	0.019	0.019	0.04	0.04	0.17	0.06	0.085	0.085	0.4
Rated current	I _{rated}	А	0.12	0.12	0.3	0.3	0.73	0.25	0.75	0.75	1.75

Motor series			MCA
Size			26
Degree of protection			IP23
Number of phases			1
Rated voltage	V _{rated}	V	230
Rated power	P _{rated}	kW	0.4
Rated current	I _{rated}	А	1.75

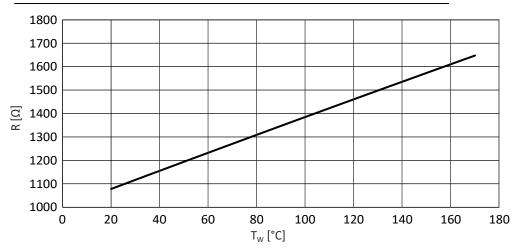
Rated data 60 Hz

Motor series				MCA							
Size		13	14	17	19	20	21	2	22	26	
Degree of protection				IP	54		IP23	IP	54	IP23	IP54
Number of phases			1	1	1	1	1	1	1	1	1
Rated voltage	V _{rated}	V	230	230	230	230	230	230	230	230	230
Rated power	P _{rated}	kW	0.019	0.019	0.04	0.04	0.2	0.06	0.085	0.085	0.41
Rated current	I _{rated}	А	0.11	0.11	0.25	0.25	0.9	0.29	0.75	0.75	1.82

Motor series			MCA
Size			26
Degree of protection			IP23
Number of phases			1
Rated voltage	V _{rated}	V	230
Rated power	P _{rated}	kW	0.41
Rated current	I _{rated}	А	1.82

Temperature monitoring Thermal detectors PT1000

Temperature monitoring


Thermal detectors PT1000

The thermal detector used continuously monitors the motor temperature. The temperature information is transferred to the inverter using the system cable of the feedback system. **This is not a full motor protection!**

This makes it possible to determine the motor temperature in the permissible operating range with great accuracy.

When supplying the thermal sensors with a measurement current of 1 mA, the connection between the temperature and the resistance measured applies.

R Resistance

 ${\rm T_W}$ Winding temperature

Product codes

Product code of MCA asynchronous servo motor

Γ.											ı
6	Example	M	C	A	10	C	40	-	RS0	B0	ĺ

Meaning Variant **Product code Product family** Motor Μ Туре Compact servo motors С Version Asynchronous Α Motor frame size Square dimension 102 mm 10 Square dimension 130 mm 13 Square dimension 142 mm 14 Square dimension 165 mm 17 Square dimension 192 mm 19 Square dimension 200 mm 20 Square dimension 214 mm 21 Square dimension 220 mm 22 Square dimension 260 mm 26 Overall length ı Χ Rated speed rpm x 100 05 42 Inverter mains connection 3 x 400 V Motor protection class Degree of protection: IP54 / IP65 3 x 400 V Н Degree of protection: IP23 Feedback SinCos absolute value encoder, single-turn, EnDat ECN AS2048-5V-E SinCos absolute value encoder, multi-turn, EnDat EQI AM32-5V-E SinCos absolute value encoder, multi-turn, EnDat EQN AM2048-5V-E RS0 Resolver Safety resolver RV0 RV03 SinCos safety incremental encoder, single-turn S1S IG1024-5V-V3 SinCos incremental encoder, single-turn S20 IG2048-5V-S SinCos absolute value encoder, multi-turn, Hiperface® SRM AM1024-8V-H SinCos absolute value encoder, single-turn, Hiperface® SRS AS1024-8V-H TTL incremental encoder T20 IG2048-5V-T TTL incremental encoder T40 IG4096-5V-T Without brake В0 Brake Spring-applied brake DC 24 V F1 Spring-applied brake DC 24 V, reinforced F2 Spring-applied brake AC 230 V FG Spring-applied brake AC 230 V, reinforced FΗ Permanent magnet brake DC 24V P1 Ρ4

Permanent magnet brake DC 205 V

P5 ... P8

Environmental notes and recycling

Lenze has been certified to the worldwide DIN EN ISO 14001 environmental management standard for many years. As part of our environmental policy and the associated climate responsibility, please note the following information on hazardous ingredients and the recycling of Lenze products and their packaging:

Lenze products are partly subject to the EU Directive 2011/65/EU on the restriction of certain hazardous substances in electrical and electronic equipment (RoHS). This is documented accordingly in the EU declaration of conformity and with the CE mark.

Lenze products are not subject to EU Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), but some contain batteries/rechargeable batteries in accordance with EU Directive 2006/66/EC (Battery Directive). The disposal route, which is separate from household waste, is indicated by corresponding labels with the "crossed-out trash can".

Any batteries/rechargeable batteries included are designed to last the life of the product and do not need to be replaced or otherwise removed by the end user.

Lenze products are usually sold with cardboard or plastic packaging. This packaging complies with EU Directive 94/62/EC on packaging and packaging waste (Packaging Directive). The required disposal route is indicated by material-specific labels with the "recycling triangle".

Example: "21 - other cardboard"

REACH Lenze products are subject to the European Regulation EC No. 1907/2006 (REACH Chemicals Regulation). When used as intended, exposure of substances to humans, animals and the environment is excluded.

Lenze products are industrial electrical and electronic products and are disposed of professionally. Both the mechanical and electrical components such as electric motors, gearboxes or inverters contain valuable raw materials that can be recycled and reused. Proper recycling and thus maintaining the highest possible level of recyclability is therefore important and sensible from an economic and ecological point of view.

- Coordinate professional disposal with your waste disposal company.
- Separate mechanical and electrical components, packaging, hazardous waste (e.g. gear oils) and batteries/rechargeable batteries wherever possible.
- Dispose of the separated waste in an environmentally sound and proper manner (no household waste or municipal bulky waste).

What?	Material	Disposal instructions
Pallets	Wood	Return to manufacturers, freight forwarders or reusable materials collection system
Packaging material	Paper, cardboard, pasteboard, plastics	Collect and dispose of separately
Products		
Electronic devices	Metal, plastics, circuit boards, heatsinks	As electronic waste give to professional disposer for recycling
Gearbox	Oil	Drain oil and dispose of separately
	Casting, steel, aluminium	Dispose as metal scrap
Motors	Casting, copper, rotors, magnets, potting compound	As engine scrap give to professional disposer for recycling
Dry-cell batteries/rechargeable batteries		As used batteries give to professional disposer for recycling

Further information on Lenze's environmental and climate responsibility and on the topic of energy efficiency can be found on the Internet:

www.Lenze.com → search word: "Sustainability"

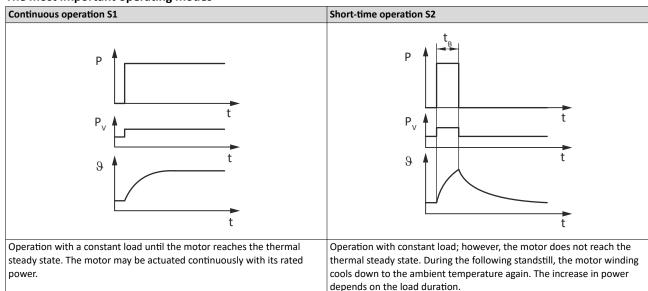
Appendix

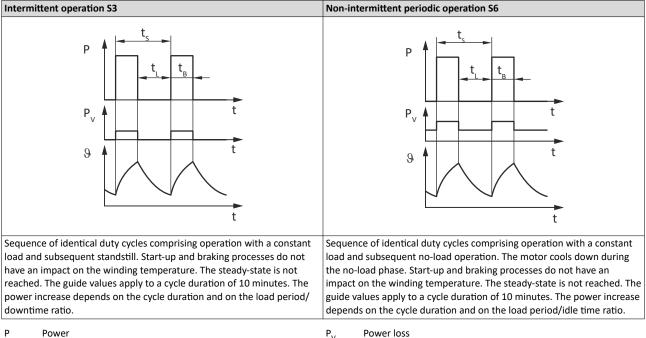
Good to know

Approvals and directives

CCC	China Compulsory Certification
	documents the compliance with the legal product safety requirements of the PR of China - in accordance with Guobiao standards.
_C CSA _{US}	CSA certificate, tested according to US and Canada standards
UE	Union Européenne
	documents the declaration of the manufacturer that EU Directives are complied with.
CEL	China Energy Label
	documents the compliance with the legal energy efficiency requirements for motors, tested according to the PR of China and
	Guobiao standards
CSA	CSA Group (Canadian Standards Association)
	CSA certificate, tested according to Canada standards
UL ^{Energy} US CA	Energy Verified Certificate
03 CA	Determining the energy efficiency according to CSA C390 for products within the scope of energy efficiency requirements in the
	USA and Canada
_c UL _{us}	UL certificate
	for products, tested according to US and Canada standards
_c UR _{us}	UL certificate
	for components, tested according to US and Canada standards
EAC	Customs union Russia / Belarus / Kazakhstan certificate
	documents the declaration of the manufacturer that the specifications for the Eurasian conformity (EAC) required for placing
	electronic and electromechanical products on the market of the entire territory of the Customs Union (Russia, Belarus,
	Kazakhstan, Armenia and Kyrgyzstan) are complied with.
UL	Underwriters Laboratory Listed Product
UL _{LISTED}	UL Listing approval mark
2.01.25	as proof that the product has been tested and the applicable safety requirements have been confirmed by UL (Underwriters
	Laboratory).
UR	UL Recognized Component approval mark
	as proof that the UL approved component can be used in a product or system bearing the UL Listing approval mark.

Good to know
Operating modes of the motor


Operating modes of the motor


Operating modes S1 ... S10 as specified by EN 60034-1 describe the basic stress of an electrical machine.

In continuous operation a motor reaches its permissible temperature limit if it outputs the rated power dimensioned for continuous operation. However, if the motor is only subjected to load for a short time, the power output by the motor may be greater without the motor reaching its permissible temperature limit. This behaviour is referred to as overload capacity.

Depending on the duration of the load and the resulting temperature rise, the required motor can be selected reduced by the overload capacity.

The most important operating modes

Idle time

Time

t

t,

Enclosures

The degree of protection indicates the suitability of a motor for specific ambient conditions with regard to humidity as well as the protection against contact and the ingress of foreign particles. The degrees of protection are classified by EN 60529.

The first code number after the code letters IP indicates the protection against the ingress of foreign particles and dust. The second code number refers to the protection against the ingress of humidity.

Code number 1	Degree of protection	Code number 2	Degree of protection
0	No protection	0	No protection
1	Protection against the ingress of foreign particles d > 50 mm. No protection in case of deliberate access.	1	Protection against vertically dripping water (dripping water).
2	Protection against medium-sized foreign particles, d > 12 mm, keeping away fingers or the like.	2	Protection against diagonally falling water (dripping water), 15 ° compared to normal service position.
3	Protection against small foreign particles d > 2.5 mm. Keeping away tools, wires or the like.	3	Protection against spraying water, up to 60 ° from vertical.
4	Protection against granular foreign particles, d > 1 mm, keeping away tools, wire or the like.	4	Protection against spraying water from all directions.
5	Protection against dust deposits (dust-protected), complete protection against contact.	5	Protection against water jets from all directions.
6	Protection against the ingress of dust (dust-proof), complete protection against contact.	6	Protection against choppy seas or heavy water jets (flood protection).

